极大
发表于 2025-3-21 17:07:44
书目名称Chain Conditions in Commutative Rings影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0223379<br><br> <br><br>书目名称Chain Conditions in Commutative Rings影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0223379<br><br> <br><br>书目名称Chain Conditions in Commutative Rings网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0223379<br><br> <br><br>书目名称Chain Conditions in Commutative Rings网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0223379<br><br> <br><br>书目名称Chain Conditions in Commutative Rings被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0223379<br><br> <br><br>书目名称Chain Conditions in Commutative Rings被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0223379<br><br> <br><br>书目名称Chain Conditions in Commutative Rings年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0223379<br><br> <br><br>书目名称Chain Conditions in Commutative Rings年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0223379<br><br> <br><br>书目名称Chain Conditions in Commutative Rings读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0223379<br><br> <br><br>书目名称Chain Conditions in Commutative Rings读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0223379<br><br> <br><br>
Concerto
发表于 2025-3-21 22:39:52
http://image.papertrans.cn/c/image/223379.jpg
Encapsulate
发表于 2025-3-22 01:43:33
https://doi.org/10.1007/978-3-031-09898-7S-Noetherian; S-Artinian; Nonnil-Noetherian; Strongly Hopfian; polynomials; power series; almost principal
钝剑
发表于 2025-3-22 05:53:48
978-3-031-10147-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
dragon
发表于 2025-3-22 10:38:23
Tables 23 - 32, Figs. 90 - 114,ed in many areas including commutative algebra and algebraic geometry. The Noetherian property was originally due to the mathematician Noether who first considered a relation between the ascending chain condition on ideals and the finitely generatedness of ideals.
FIN
发表于 2025-3-22 13:07:33
Tables 23 - 32, Figs. 90 - 114,domorphism . of ., the sequence . . ⊆ . .. ⊆… is stationary. The ring . is strongly Hopfian if it is strongly Hopfian as an .-module. This is also equivalent to the fact that for each . ∈ ., the sequence .(.) ⊆ .(..) ⊆… is stationary. In this chapter, we study this notion and its transfer to differe
FIN
发表于 2025-3-22 20:47:33
http://reply.papertrans.cn/23/2234/223379/223379_7.png
冲突
发表于 2025-3-23 00:29:47
http://reply.papertrans.cn/23/2234/223379/223379_8.png
Nucleate
发表于 2025-3-23 03:37:04
Tables 23 - 32, Figs. 90 - 114,In this chapter, all the rings considered are commutative with unity. A multiplicative set contains 1 and does not contain 0.
PAD416
发表于 2025-3-23 09:29:52
1.0.3 List of symbols and abbreviations,Let . be an integral domain. In this chapter, we define a notion of almost principal for the domain .[.]. Then we characterize those . with this property. All the rings considered in this chapter are commutative with identity.