夹子 发表于 2025-3-21 17:09:00

书目名称Certificates of Positivity for Real Polynomials影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0223347<br><br>        <br><br>书目名称Certificates of Positivity for Real Polynomials影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0223347<br><br>        <br><br>书目名称Certificates of Positivity for Real Polynomials网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0223347<br><br>        <br><br>书目名称Certificates of Positivity for Real Polynomials网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0223347<br><br>        <br><br>书目名称Certificates of Positivity for Real Polynomials被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0223347<br><br>        <br><br>书目名称Certificates of Positivity for Real Polynomials被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0223347<br><br>        <br><br>书目名称Certificates of Positivity for Real Polynomials年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0223347<br><br>        <br><br>书目名称Certificates of Positivity for Real Polynomials年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0223347<br><br>        <br><br>书目名称Certificates of Positivity for Real Polynomials读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0223347<br><br>        <br><br>书目名称Certificates of Positivity for Real Polynomials读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0223347<br><br>        <br><br>

独特性 发表于 2025-3-21 22:09:08

Sums of Squares and Positive Polynomials, polynomials and sums of squares, which underlies everything else in the book. This theory has its origins in the work of Hilbert from the late 19th century; Hilbert’s interest in these topics appears to have started when he was an officially appointed “opponent” for Minkowski’s thesis defense on July 30, 1885.

aspect 发表于 2025-3-22 01:41:33

http://reply.papertrans.cn/23/2234/223347/223347_3.png

解冻 发表于 2025-3-22 07:24:44

Positive Polynomials with Special Structure, that are invariant under a permutation of their variables, and some whose associated Newton polytope is of a special type. For polynomials with special structure, we discuss conditions which imply or characterize when the polynomial is psd, and when it is sos.

嬉耍 发表于 2025-3-22 11:27:30

Certificates of Positivity for Real Polynomials978-3-030-85547-5Series ISSN 1389-2177 Series E-ISSN 2197-795X

Left-Atrium 发表于 2025-3-22 16:07:48

Sind Personen mit Demenz palliativbedürftig?ince the square of a real number is always nonnegative. This simple but powerful fact and generalizations of it underlie a large body of theoretical and computational results concerning positive polynomials and sums of squares.

Left-Atrium 发表于 2025-3-22 19:46:49

http://reply.papertrans.cn/23/2234/223347/223347_7.png

Creditee 发表于 2025-3-22 23:28:53

http://reply.papertrans.cn/23/2234/223347/223347_8.png

并入 发表于 2025-3-23 01:29:37

http://reply.papertrans.cn/23/2234/223347/223347_9.png

acquisition 发表于 2025-3-23 09:31:03

https://doi.org/10.1007/978-3-030-85547-5semialgebraic sets and related spaces; sums of squares; ternary quartics; Polya‘s theorem; Scheiderer‘s
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Certificates of Positivity for Real Polynomials; Theory, Practice, an Victoria Powers Book 2021 The Editor(s) (if applicable) and The Autho