enflame 发表于 2025-3-28 17:24:55
https://doi.org/10.1007/978-3-319-01559-0convergence spaces such as topological spaces, pretopological spaces (=closure spaces in the sense of Čech ), limit spaces (in the sense of Kowalsky and Fischer ) or Kent convergence spaces can be characterized when they are considered as semiuniform convergence spaces (provided all conveCupidity 发表于 2025-3-28 21:39:13
https://doi.org/10.1007/978-3-319-01559-0 a linear system (.) consisting of a Hilbert or Euclidean space . and a continuous linear operator .: . → . and satisfying the equivariancy condition .. = . ○ .. Our main results concern linearization by systems (.) in which the norm of . is < 1. By a weakening of the equivariancy condition . ○ . =neutral-posture 发表于 2025-3-29 00:43:32
Capital-Building in Post-War Germany these properties to computer science..A metric space (.) is called . (or . , or . ) if its metric satisfies the strong triangle axiom: .This is usually called the Ultrametric Axiom. Ultrametric spaces were described up to homeomorphism in , up to uniform equivalence in , and upFissure 发表于 2025-3-29 06:47:43
Daniel McInerney,Pieter Kempeneersre exactly those isomorphic to categories of modules that are fully embedded into Ab. Rings giving rise to such modules are completely described. One of the curious special cases is provided by the full subcategory of Ab consisting of all torsion-free, divisible Abelian groups, which can be characte江湖骗子 发表于 2025-3-29 09:00:49
9楼esoteric 发表于 2025-3-29 12:25:00
9楼社团 发表于 2025-3-29 18:17:35
10楼嘲笑 发表于 2025-3-29 22:42:07
10楼Ancestor 发表于 2025-3-30 03:16:44
10楼直言不讳 发表于 2025-3-30 06:41:20
10楼