LUCY 发表于 2025-3-25 06:48:48
http://reply.papertrans.cn/23/2225/222419/222419_21.png轮流 发表于 2025-3-25 11:04:21
http://reply.papertrans.cn/23/2225/222419/222419_22.pngComprise 发表于 2025-3-25 13:03:56
Elisabeth Wilson-Evered,John ZeleznikowIn this chapter and chapter 14, we prove Theorem II of chapter 1. There are two main ingredients: the Runge method, exploited here, and Thaine’s theorem, which is used in chapter 14.construct 发表于 2025-3-25 17:16:10
http://reply.papertrans.cn/23/2225/222419/222419_24.pngCrater 发表于 2025-3-25 21:02:12
http://reply.papertrans.cn/23/2225/222419/222419_25.pngHippocampus 发表于 2025-3-26 03:16:16
http://reply.papertrans.cn/23/2225/222419/222419_26.png暂时中止 发表于 2025-3-26 04:29:18
https://doi.org/10.1007/978-3-030-64915-9In this chapter we prove an important special case of Thaine’s theorem .Ornithologist 发表于 2025-3-26 09:57:28
Introduction,In this book, we present Preda Mihăilescu’s beautiful proof of the conjecture made by Eugène Charles Catalan in 1844 in a letter to the editor of Crelle’s journal.长处 发表于 2025-3-26 14:13:57
,The Case “, = 2”,The proof is by a 2-adic argument . It exploits the arithmetic of the ring of Gaussian integers .. See Exercise 2.2.谦虚的人 发表于 2025-3-26 18:35:50
http://reply.papertrans.cn/23/2225/222419/222419_30.png