LUCY 发表于 2025-3-25 06:48:48

http://reply.papertrans.cn/23/2225/222419/222419_21.png

轮流 发表于 2025-3-25 11:04:21

http://reply.papertrans.cn/23/2225/222419/222419_22.png

Comprise 发表于 2025-3-25 13:03:56

Elisabeth Wilson-Evered,John ZeleznikowIn this chapter and chapter 14, we prove Theorem II of chapter 1. There are two main ingredients: the Runge method, exploited here, and Thaine’s theorem, which is used in chapter 14.

construct 发表于 2025-3-25 17:16:10

http://reply.papertrans.cn/23/2225/222419/222419_24.png

Crater 发表于 2025-3-25 21:02:12

http://reply.papertrans.cn/23/2225/222419/222419_25.png

Hippocampus 发表于 2025-3-26 03:16:16

http://reply.papertrans.cn/23/2225/222419/222419_26.png

暂时中止 发表于 2025-3-26 04:29:18

https://doi.org/10.1007/978-3-030-64915-9In this chapter we prove an important special case of Thaine’s theorem .

Ornithologist 发表于 2025-3-26 09:57:28

Introduction,In this book, we present Preda Mihăilescu’s beautiful proof of the conjecture made by Eugène Charles Catalan in 1844 in a letter to the editor of Crelle’s journal.

长处 发表于 2025-3-26 14:13:57

,The Case “, = 2”,The proof is by a 2-adic argument . It exploits the arithmetic of the ring of Gaussian integers .. See Exercise 2.2.

谦虚的人 发表于 2025-3-26 18:35:50

http://reply.papertrans.cn/23/2225/222419/222419_30.png
页: 1 2 [3] 4 5 6
查看完整版本: Titlebook: Catalan‘s Conjecture; René Schoof Textbook 2008 Springer-Verlag London 2008 Algebra.Arithmetic.Catalan‘s conjecture.algebraic number theor