婉言 发表于 2025-3-21 17:47:46
书目名称Case-Based Reasoning Research and Development影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0222324<br><br> <br><br>书目名称Case-Based Reasoning Research and Development影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0222324<br><br> <br><br>书目名称Case-Based Reasoning Research and Development网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0222324<br><br> <br><br>书目名称Case-Based Reasoning Research and Development网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0222324<br><br> <br><br>书目名称Case-Based Reasoning Research and Development被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0222324<br><br> <br><br>书目名称Case-Based Reasoning Research and Development被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0222324<br><br> <br><br>书目名称Case-Based Reasoning Research and Development年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0222324<br><br> <br><br>书目名称Case-Based Reasoning Research and Development年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0222324<br><br> <br><br>书目名称Case-Based Reasoning Research and Development读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0222324<br><br> <br><br>书目名称Case-Based Reasoning Research and Development读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0222324<br><br> <br><br>nurture 发表于 2025-3-21 23:27:13
978-3-031-14922-1The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl万灵丹 发表于 2025-3-22 03:40:22
http://reply.papertrans.cn/23/2224/222324/222324_3.pngGourmet 发表于 2025-3-22 07:40:29
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/c/image/222324.jpg一再烦扰 发表于 2025-3-22 11:41:53
A Note on the Wave Climatology of UK Waters Machine Learning or black-box models. Existing XAI libraries offer a good number of explanation methods, that are reusable for different domains and models, with different choices of parameters. However, it is not clear what would be a good explainer for a given situation, domain, AI model, and useOMIT 发表于 2025-3-22 14:37:27
Alison Schwartz-Kripner,Cornelia P. ChanningHence, the popular methods generate synthetic counterfactuals using “blind” perturbation, by manipulating feature values to elicit a class change. However, this strategy has other problems, notably a tendency to generate invalid data points that are . or that involve feature-values that do not naturOMIT 发表于 2025-3-22 20:00:57
http://reply.papertrans.cn/23/2224/222324/222324_7.png郊外 发表于 2025-3-22 22:05:37
W. Mestwerdt,O. Müller,H. Brandauper we show how this can be addressed in a case-based reasoning (CBR) context by a metric learning strategy that explicitly considers bias/fairness. Since one of the advantages CBR has over alternative machine learning approaches is interpretability, it is interesting to see how much this metric lea放气 发表于 2025-3-23 02:04:37
http://reply.papertrans.cn/23/2224/222324/222324_9.pngSad570 发表于 2025-3-23 05:32:43
Critical Fluctuations Under Shear Flow,erize domains. The effectiveness of machine learning with deep neural networks has prompted much interest in neural network approaches to feature learning in case-based reasoning, with several works showing the value of feature extraction from input data using convolutional neural networks. Those ap