密度 发表于 2025-3-21 16:39:08
书目名称Cartesian Currents in the Calculus of Variations II影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0222188<br><br> <br><br>书目名称Cartesian Currents in the Calculus of Variations II影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0222188<br><br> <br><br>书目名称Cartesian Currents in the Calculus of Variations II网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0222188<br><br> <br><br>书目名称Cartesian Currents in the Calculus of Variations II网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0222188<br><br> <br><br>书目名称Cartesian Currents in the Calculus of Variations II被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0222188<br><br> <br><br>书目名称Cartesian Currents in the Calculus of Variations II被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0222188<br><br> <br><br>书目名称Cartesian Currents in the Calculus of Variations II年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0222188<br><br> <br><br>书目名称Cartesian Currents in the Calculus of Variations II年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0222188<br><br> <br><br>书目名称Cartesian Currents in the Calculus of Variations II读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0222188<br><br> <br><br>书目名称Cartesian Currents in the Calculus of Variations II读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0222188<br><br> <br><br>MORPH 发表于 2025-3-21 23:12:05
http://reply.papertrans.cn/23/2222/222188/222188_2.pngAntagonist 发表于 2025-3-22 02:20:01
The Dirichlet Energy for Maps into the Two Dimensional Sphere,. Dirichlet integral, according to the terminology of Ch. 1, and more specifically, with the Dirichlet integral for mappings from a domain in ℝ. or in an oriented n-dimensional Riemannian manifold . into the standard sphere .. of ℝ.. In the next chapter we shall discuss the in general . Dirichlet enPericarditis 发表于 2025-3-22 06:55:09
http://reply.papertrans.cn/23/2222/222188/222188_4.pngwall-stress 发表于 2025-3-22 10:16:03
http://reply.papertrans.cn/23/2222/222188/222188_5.png镇痛剂 发表于 2025-3-22 16:07:32
0071-1136 readable independently.Chapters and even sections readable iNon-scalar variational problems appear in different fields. In geometry, for in stance, we encounter the basic problems of harmonic maps between Riemannian manifolds and of minimal immersions; related questions appear in physics, for examp镇痛剂 发表于 2025-3-22 21:01:57
http://reply.papertrans.cn/23/2222/222188/222188_7.pngKeshan-disease 发表于 2025-3-23 00:41:43
https://doi.org/10.1007/3-540-69687-3 an oriented n-dimensional Riemannian manifold . into the standard sphere .. of ℝ.. In the next chapter we shall discuss the in general . Dirichlet energy for mappings from a generic oriented Riemannian manifold . into a generic oriented compact boundaryless Riemannian manifold ..慢慢冲刷 发表于 2025-3-23 01:28:44
http://reply.papertrans.cn/23/2222/222188/222188_9.png被诅咒的人 发表于 2025-3-23 09:23:14
http://reply.papertrans.cn/23/2222/222188/222188_10.png