密度 发表于 2025-3-21 16:39:08

书目名称Cartesian Currents in the Calculus of Variations II影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0222188<br><br>        <br><br>书目名称Cartesian Currents in the Calculus of Variations II影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0222188<br><br>        <br><br>书目名称Cartesian Currents in the Calculus of Variations II网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0222188<br><br>        <br><br>书目名称Cartesian Currents in the Calculus of Variations II网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0222188<br><br>        <br><br>书目名称Cartesian Currents in the Calculus of Variations II被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0222188<br><br>        <br><br>书目名称Cartesian Currents in the Calculus of Variations II被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0222188<br><br>        <br><br>书目名称Cartesian Currents in the Calculus of Variations II年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0222188<br><br>        <br><br>书目名称Cartesian Currents in the Calculus of Variations II年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0222188<br><br>        <br><br>书目名称Cartesian Currents in the Calculus of Variations II读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0222188<br><br>        <br><br>书目名称Cartesian Currents in the Calculus of Variations II读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0222188<br><br>        <br><br>

MORPH 发表于 2025-3-21 23:12:05

http://reply.papertrans.cn/23/2222/222188/222188_2.png

Antagonist 发表于 2025-3-22 02:20:01

The Dirichlet Energy for Maps into the Two Dimensional Sphere,. Dirichlet integral, according to the terminology of Ch. 1, and more specifically, with the Dirichlet integral for mappings from a domain in ℝ. or in an oriented n-dimensional Riemannian manifold . into the standard sphere .. of ℝ.. In the next chapter we shall discuss the in general . Dirichlet en

Pericarditis 发表于 2025-3-22 06:55:09

http://reply.papertrans.cn/23/2222/222188/222188_4.png

wall-stress 发表于 2025-3-22 10:16:03

http://reply.papertrans.cn/23/2222/222188/222188_5.png

镇痛剂 发表于 2025-3-22 16:07:32

0071-1136 readable independently.Chapters and even sections readable iNon-scalar variational problems appear in different fields. In geometry, for in­ stance, we encounter the basic problems of harmonic maps between Riemannian manifolds and of minimal immersions; related questions appear in physics, for examp

镇痛剂 发表于 2025-3-22 21:01:57

http://reply.papertrans.cn/23/2222/222188/222188_7.png

Keshan-disease 发表于 2025-3-23 00:41:43

https://doi.org/10.1007/3-540-69687-3 an oriented n-dimensional Riemannian manifold . into the standard sphere .. of ℝ.. In the next chapter we shall discuss the in general . Dirichlet energy for mappings from a generic oriented Riemannian manifold . into a generic oriented compact boundaryless Riemannian manifold ..

慢慢冲刷 发表于 2025-3-23 01:28:44

http://reply.papertrans.cn/23/2222/222188/222188_9.png

被诅咒的人 发表于 2025-3-23 09:23:14

http://reply.papertrans.cn/23/2222/222188/222188_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Cartesian Currents in the Calculus of Variations II; Variational Integral Mariano Giaquinta,Giuseppe Modica,Jiří Souček Book 1998 Springer-