Baleful 发表于 2025-3-21 18:49:10

书目名称Calculus of Variations II影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0220881<br><br>        <br><br>书目名称Calculus of Variations II影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0220881<br><br>        <br><br>书目名称Calculus of Variations II网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0220881<br><br>        <br><br>书目名称Calculus of Variations II网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0220881<br><br>        <br><br>书目名称Calculus of Variations II被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0220881<br><br>        <br><br>书目名称Calculus of Variations II被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0220881<br><br>        <br><br>书目名称Calculus of Variations II年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0220881<br><br>        <br><br>书目名称Calculus of Variations II年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0220881<br><br>        <br><br>书目名称Calculus of Variations II读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0220881<br><br>        <br><br>书目名称Calculus of Variations II读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0220881<br><br>        <br><br>

Euphonious 发表于 2025-3-21 20:34:35

Studies in Computational Intelligencef first order and to Lie’s theory of contact transformations. Nevertheless the results presented here are closely related to the rest of the book, in particular to field theory (Chapter 6) and to Hamilton—Jacobi theory (Chapter 9).

混合 发表于 2025-3-22 03:18:43

http://reply.papertrans.cn/23/2209/220881/220881_3.png

LAIR 发表于 2025-3-22 07:33:30

http://reply.papertrans.cn/23/2209/220881/220881_4.png

infantile 发表于 2025-3-22 12:13:00

https://doi.org/10.1007/978-3-662-06201-2Calculus of Variations; Convexity; Hamiltonian Formalism; Lagrangian Formalism; differential equation

向下五度才偏 发表于 2025-3-22 14:31:21

978-3-642-08192-7Springer-Verlag Berlin Heidelberg 2004

向下五度才偏 发表于 2025-3-22 20:24:37

Huajin Tang,Kay Chen Tan,Zhang Yiations to the canonical formalism of Hamilton—Jacobi, which in some sense is the dual picture of the first. The . transforming one formalism into the other is the so-called . derived from the Lagrangian . of the variational problem that we are to consider. This transformation yields a global diffeom

斜谷 发表于 2025-3-22 23:46:11

Studies in Computational Intelligencels of the form., whose integrand .(.)is positively homogeneous of first degree with respect to .. Such integrals are invariant with respect to transformations of the parameter ., and therefore they play an important role in geometry. A very important example of integrals of the type (1) is furnished

Morbid 发表于 2025-3-23 02:53:28

http://reply.papertrans.cn/23/2209/220881/220881_9.png

PET-scan 发表于 2025-3-23 07:59:20

http://reply.papertrans.cn/23/2209/220881/220881_10.png
页: [1] 2 3 4
查看完整版本: Titlebook: Calculus of Variations II; Mariano Giaquinta,Stefan Hildebrandt Book 2004 Springer-Verlag Berlin Heidelberg 2004 Calculus of Variations.Co