嬉耍 发表于 2025-3-23 12:04:40
Radial Basis Function Networks,ollowing works:., P.: Catégories abéliennes. Bull. Soc. Math. France . (1962). ., A.: Sur quelques points d’algébre homologique. Tohoku math. J. serie 2. . (1957). ., S.: Homology. Berlin-Heidelberg-New York; Springer. ., B.: Theory of Categories. New York: Academic Press.Arthritis 发表于 2025-3-23 14:24:38
http://reply.papertrans.cn/23/2209/220874/220874_12.pngAccomplish 发表于 2025-3-23 18:03:12
http://reply.papertrans.cn/23/2209/220874/220874_13.png草本植物 发表于 2025-3-24 00:19:37
Dictionary,ollowing works:., P.: Catégories abéliennes. Bull. Soc. Math. France . (1962). ., A.: Sur quelques points d’algébre homologique. Tohoku math. J. serie 2. . (1957). ., S.: Homology. Berlin-Heidelberg-New York; Springer. ., B.: Theory of Categories. New York: Academic Press.epicondylitis 发表于 2025-3-24 03:22:32
http://reply.papertrans.cn/23/2209/220874/220874_15.png舰旗 发表于 2025-3-24 07:37:05
http://reply.papertrans.cn/23/2209/220874/220874_16.pngzonules 发表于 2025-3-24 13:23:40
Neural Networks and Fuzzy SystemsA functor .: .→. is said make a morphism . of . invertible if . is invertible. We intend to associate with each category . and with each subset . of . . a category .[.] and a functor .: .→.[.] such that the following conditions are verified:不吉祥的女人 发表于 2025-3-24 17:24:47
Neural Networks and Fuzzy SystemsWe wish first to complete some results of the dictionary. Notations will be the same.adroit 发表于 2025-3-24 20:43:37
Texture Recognition in Micromechanics,Let . and . be simplicial sets, and let . (., . be the complex defined in II, 2.5.3. A vertex of. (., . is a morphism f: .→Z. If . and . are two vertices, a 1-simplex . of .(., . such that .= . and .. is a morphism .: ∆ × .→. which makes the following triangles commutative (Fig. 25).FORGO 发表于 2025-3-25 01:19:43
Neural Networks and MicromechanicsWe give here a unified account of some exact sequences which we meet in algebraic topology. The proofs we give do not modify in an essential way those of PUPPE. They are more abstract, selfdual and sometimes more simple (?).