债务人 发表于 2025-3-21 18:32:34
书目名称CR Submanifolds of Kaehlerian and Sasakian Manifolds影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0220550<br><br> <br><br>书目名称CR Submanifolds of Kaehlerian and Sasakian Manifolds影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0220550<br><br> <br><br>书目名称CR Submanifolds of Kaehlerian and Sasakian Manifolds网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0220550<br><br> <br><br>书目名称CR Submanifolds of Kaehlerian and Sasakian Manifolds网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0220550<br><br> <br><br>书目名称CR Submanifolds of Kaehlerian and Sasakian Manifolds被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0220550<br><br> <br><br>书目名称CR Submanifolds of Kaehlerian and Sasakian Manifolds被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0220550<br><br> <br><br>书目名称CR Submanifolds of Kaehlerian and Sasakian Manifolds年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0220550<br><br> <br><br>书目名称CR Submanifolds of Kaehlerian and Sasakian Manifolds年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0220550<br><br> <br><br>书目名称CR Submanifolds of Kaehlerian and Sasakian Manifolds读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0220550<br><br> <br><br>书目名称CR Submanifolds of Kaehlerian and Sasakian Manifolds读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0220550<br><br> <br><br>反对 发表于 2025-3-21 20:59:16
http://reply.papertrans.cn/23/2206/220550/220550_2.pngreception 发表于 2025-3-22 01:04:12
http://reply.papertrans.cn/23/2206/220550/220550_3.png看法等 发表于 2025-3-22 07:37:44
Hypersurfaces,Let M be a real (2n−1)-dimensional hypersurfce of a Kaehlerian manifold . of complex dimension n (real dimension 2n). Then M is obviously a generic submanifold of .. We denote by C a unit normal of M in . and put ..开头 发表于 2025-3-22 09:14:48
https://doi.org/10.1007/978-3-319-59002-8ghborhood and x. local coordinates in U. If, from any system of coordinate neighborhoods covering the manifold M, we can choose a finite number of coordinate neighborhoods which cover the whole manifold, then M is said to be compact.faculty 发表于 2025-3-22 16:54:26
https://doi.org/10.1007/1-4020-4878-5 of covariant differentiation in .and by g the Riemannian metric tensor field in .. Since the discussion is local, we may assume, if we want, that M is imbedded in .. The submanifold M is also a Riemannian manifold with Riemannian metric h given by h(X,Y) = g(X,Y) for any vector fields X and Y on M.faculty 发表于 2025-3-22 17:21:01
http://reply.papertrans.cn/23/2206/220550/220550_7.png6Applepolish 发表于 2025-3-22 22:29:39
978-1-4684-9426-6Springer Science+Business Media New York 1983起波澜 发表于 2025-3-23 05:07:06
Progress in Mathematicshttp://image.papertrans.cn/c/image/220550.jpg充气女 发表于 2025-3-23 05:46:36
CR Submanifolds of Kaehlerian and Sasakian Manifolds978-1-4684-9424-2Series ISSN 0743-1643 Series E-ISSN 2296-505X