Stubborn 发表于 2025-3-21 18:02:29
书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0220103<br><br> <br><br>书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0220103<br><br> <br><br>书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0220103<br><br> <br><br>书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0220103<br><br> <br><br>书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0220103<br><br> <br><br>书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0220103<br><br> <br><br>书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0220103<br><br> <br><br>书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0220103<br><br> <br><br>书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0220103<br><br> <br><br>书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0220103<br><br> <br><br>本土 发表于 2025-3-21 22:54:14
https://doi.org/10.1007/978-3-662-54252-1In this chapter we present several examples of .0-groups which are frequently used. We shall consider Banach spaces . embedded in .. We know two .-parameter groups acting in ., namely {.(.,.} and {.(.,.)}. If the Banach space . is invariant under one of these groups.火车车轮 发表于 2025-3-22 04:19:54
https://doi.org/10.1007/978-3-662-54252-1In this chapter we specialize some of the considerations of Chap. 5 to the case of unitary ..-groups in a Hilbert space .. The theory of unitary representations .(.) = .. of ℝ. is a very well understood classical subject and will not be presented here.Offbeat 发表于 2025-3-22 07:35:02
http://reply.papertrans.cn/23/2202/220103/220103_4.png方舟 发表于 2025-3-22 12:08:43
http://reply.papertrans.cn/23/2202/220103/220103_5.pngELUC 发表于 2025-3-22 15:09:36
Some Examples of ,0,Groups,In this chapter we present several examples of .0-groups which are frequently used. We shall consider Banach spaces . embedded in .. We know two .-parameter groups acting in ., namely {.(.,.} and {.(.,.)}. If the Banach space . is invariant under one of these groups.ELUC 发表于 2025-3-22 20:32:22
Unitary Representations and Regularity for Self-Adjoint Operators,In this chapter we specialize some of the considerations of Chap. 5 to the case of unitary ..-groups in a Hilbert space .. The theory of unitary representations .(.) = .. of ℝ. is a very well understood classical subject and will not be presented here.漂泊 发表于 2025-3-23 00:49:22
,Quantum–Mechanical ,-Body Systems,The purpose of this chapter is to explain how quantum–mechanical .-body systems (. ≥ 2) fit into the geometric framework presented in this text. Section 10.1 is concerned with the appropriate semilattice of subspaces and Section 10.2 with the associated .-body Hamiltonians.极微小 发表于 2025-3-23 04:55:30
https://doi.org/10.1007/978-3-0348-0733-3Mourre‘s commutator theory; algebraic framework for many-body problem; conjugate operator method; funti不如屎壳郎 发表于 2025-3-23 06:33:32
http://reply.papertrans.cn/23/2202/220103/220103_10.png