不让做的事
发表于 2025-3-21 17:17:43
书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0220001<br><br> <br><br>书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0220001<br><br> <br><br>书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0220001<br><br> <br><br>书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0220001<br><br> <br><br>书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0220001<br><br> <br><br>书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0220001<br><br> <br><br>书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0220001<br><br> <br><br>书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0220001<br><br> <br><br>书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0220001<br><br> <br><br>书目名称C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0220001<br><br> <br><br>
同步信息
发表于 2025-3-21 23:21:37
Karl-Heinz Hoffmann,Gabriele WittersteinThe purpose of this chapter is to explain how quantum-mechanical .-body systems (. ≥ 2) fit into the geometric framework presented in this text. Section 10.1 is concerned with the appropriate semilattice of subspaces and Section 10.2 with the associated .-body Hamiltonians.
贫困
发表于 2025-3-22 00:32:39
http://reply.papertrans.cn/23/2201/220001/220001_3.png
不发音
发表于 2025-3-22 04:45:10
Quantum-Mechanical ,-Body Systems,The purpose of this chapter is to explain how quantum-mechanical .-body systems (. ≥ 2) fit into the geometric framework presented in this text. Section 10.1 is concerned with the appropriate semilattice of subspaces and Section 10.2 with the associated .-body Hamiltonians.
Peristalsis
发表于 2025-3-22 11:47:19
http://reply.papertrans.cn/23/2201/220001/220001_5.png
VAN
发表于 2025-3-22 14:50:15
Birkhäuser Verlag 1996
VAN
发表于 2025-3-22 17:39:36
C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians978-3-0348-7762-6Series ISSN 0743-1643 Series E-ISSN 2296-505X
Phagocytes
发表于 2025-3-22 23:05:22
,Ein mathematisches Modell für Rüstung,ontained in Section 9.4. In particular we prove the Mourre estimate for a very large class of short range and long range (local or non-local) many-body interactions; our method of proof is based on the algebraic approach described in Chapter 8 and is quite different from the methods of Perry, Sigal, Simon and Froese, Herbst .
全神贯注于
发表于 2025-3-23 01:29:14
http://reply.papertrans.cn/23/2201/220001/220001_9.png
intricacy
发表于 2025-3-23 06:20:42
http://reply.papertrans.cn/23/2201/220001/220001_10.png