CULT 发表于 2025-3-21 16:34:02
书目名称Bayesian Compendium影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0192626<br><br> <br><br>书目名称Bayesian Compendium影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0192626<br><br> <br><br>书目名称Bayesian Compendium网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0192626<br><br> <br><br>书目名称Bayesian Compendium网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0192626<br><br> <br><br>书目名称Bayesian Compendium被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0192626<br><br> <br><br>书目名称Bayesian Compendium被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0192626<br><br> <br><br>书目名称Bayesian Compendium年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0192626<br><br> <br><br>书目名称Bayesian Compendium年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0192626<br><br> <br><br>书目名称Bayesian Compendium读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0192626<br><br> <br><br>书目名称Bayesian Compendium读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0192626<br><br> <br><br>CAMEO 发表于 2025-3-21 21:46:20
http://reply.papertrans.cn/20/1927/192626/192626_2.png善于骗人 发表于 2025-3-22 03:24:43
http://reply.papertrans.cn/20/1927/192626/192626_3.png远地点 发表于 2025-3-22 07:07:25
Deriving the Posterior Distribution,s the information content of our data. So all that is left is to apply Bayes’ Theorem (Eq. (.)) to derive our desired posterior distribution. Note that when talking about the posterior, we use the phrase ‘deriving the’ distribution rather than ‘assigning a’ distribution. That is because Bayes’ TheorMagisterial 发表于 2025-3-22 10:45:45
Markov Chain Monte Carlo Sampling (MCMC),or—instead we aim to determine the posterior probability distribution for the parameters. Only the full probability distribution adequately represents our state of knowledge. Although this shift in thinking has made rigorous uncertainty quantification possible, it has also created computational prob记忆法 发表于 2025-3-22 15:17:59
MCMC and Multivariate Models,fundamentally different from the simpler models we studied in the previous chapters; we can still write them as functions . of their input consisting of covariates . and parameters .. But the output . from the models will be multivariate, e.g. time series of different properties of an ecosystem. ThaAdherent 发表于 2025-3-22 18:20:10
http://reply.papertrans.cn/20/1927/192626/192626_7.pngContracture 发表于 2025-3-22 21:52:14
Discrepancy,ertainty translates into predictive uncertainty. And if we get new data, then we can use Bayes’ Theorem to update the parameter distribution and thereby reduce our predictive uncertainty. So far, so good. But a more difficult problem is that of uncertainty about model structure. We know that all mod被诅咒的人 发表于 2025-3-23 01:41:32
http://reply.papertrans.cn/20/1927/192626/192626_9.pngSubstance-Abuse 发表于 2025-3-23 09:07:46
Gaussian Processes and Model Emulation,MC algorithms. MCMC is especially slow when the model of interest is a process-based model (PBM) with a long run-time. In such cases, it may be good to replace the PBM with a faster surrogate model. The surrogate model will take the same inputs as the original model but calculate the output more qui