一起 发表于 2025-3-23 10:42:08

http://reply.papertrans.cn/20/1919/191899/191899_11.png

竞选运动 发表于 2025-3-23 14:52:39

https://doi.org/10.1007/978-3-8351-9000-9We recall that all buildings considered here are supposed to have finite Weyl complexes.

恶臭 发表于 2025-3-23 18:44:03

https://doi.org/10.1007/978-3-8351-9000-9In this section, we briefly recall some basic facts about sesquilinear forms, mainly in order to fix our terminology. For further details, see for instance , .

失望昨天 发表于 2025-3-24 01:25:28

Teubner Studienbücher MathematikTHEOREM. . K . k, . n. : K → k . 3 . K. . (7.2.6) . K × k. → k . . . x. ∈ K . x. ∈ k . i = 1, 2, 3, 4.

旧石器 发表于 2025-3-24 04:39:13

Grenzwerte von Funktionen und StetigkeitA total ordering (resp. a numbering from 1 to 4) of the vertices of the diagram F. is called . if two consecutive vertices are joined by a single or double stroke (resp. if the ordering determined by this numbering is natural).

CLAP 发表于 2025-3-24 07:01:10

,Einführung in die Funktionalanalysis,In 6.3, 7.4, 7.12, 10.13, we have seen that the study of weak buildings of the types A., C., D., F. is equivalent to the study of some “spaces” (projective spaces, polar spaces, etc.). The methods we have used to associate spaces to buildings are special cases of a general procedure which we shall describe here.

自然环境 发表于 2025-3-24 13:25:57

http://reply.papertrans.cn/20/1919/191899/191899_17.png

闷热 发表于 2025-3-24 18:35:54

http://reply.papertrans.cn/20/1919/191899/191899_18.png

AWL 发表于 2025-3-24 22:18:34

Buildings of type Cn. II. Projective embeddings of polar spaces,In this section, we briefly recall some basic facts about sesquilinear forms, mainly in order to fix our terminology. For further details, see for instance , .

FUME 发表于 2025-3-25 00:46:24

Buildings of type Cn. III. Non-embeddable polar spaces,THEOREM. . K . k, . n. : K → k . 3 . K. . (7.2.6) . K × k. → k . . . x. ∈ K . x. ∈ k . i = 1, 2, 3, 4.
页: 1 [2] 3 4 5 6
查看完整版本: Titlebook: Buildings of Spherical Type and Finite BN-Pairs; Jacques Tits Book 1974 Springer-Verlag Berlin Heidelberg 1974 Finite.Morphism.algebra.alg