粘上
发表于 2025-3-21 19:31:13
书目名称Brownian Motion and its Applications to Mathematical Analysis影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0191324<br><br> <br><br>书目名称Brownian Motion and its Applications to Mathematical Analysis影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0191324<br><br> <br><br>书目名称Brownian Motion and its Applications to Mathematical Analysis网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0191324<br><br> <br><br>书目名称Brownian Motion and its Applications to Mathematical Analysis网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0191324<br><br> <br><br>书目名称Brownian Motion and its Applications to Mathematical Analysis被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0191324<br><br> <br><br>书目名称Brownian Motion and its Applications to Mathematical Analysis被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0191324<br><br> <br><br>书目名称Brownian Motion and its Applications to Mathematical Analysis年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0191324<br><br> <br><br>书目名称Brownian Motion and its Applications to Mathematical Analysis年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0191324<br><br> <br><br>书目名称Brownian Motion and its Applications to Mathematical Analysis读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0191324<br><br> <br><br>书目名称Brownian Motion and its Applications to Mathematical Analysis读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0191324<br><br> <br><br>
欢腾
发表于 2025-3-21 20:18:36
Reflected Brownian Motion in Time Dependent Domains,
artless
发表于 2025-3-22 01:58:02
http://reply.papertrans.cn/20/1914/191324/191324_3.png
EWER
发表于 2025-3-22 05:01:35
https://doi.org/10.1007/978-3-476-03898-2terpretation says that, informally speaking, a process conditioned to avoid the boundary of a domain on a time interval will be far from the boundary at the end of the time interval, with high probability. An application of the parabolic boundary Harnack principle is also given.
ZEST
发表于 2025-3-22 12:26:48
Krzysztof BurdzyContains interesting examples of couplings.Gentle introduction to Brownian motion and analysis.Heuristic explanations of the main results
fodlder
发表于 2025-3-22 14:50:01
http://reply.papertrans.cn/20/1914/191324/191324_6.png
PURG
发表于 2025-3-22 20:08:07
http://reply.papertrans.cn/20/1914/191324/191324_7.png
Exclaim
发表于 2025-3-22 21:40:20
https://doi.org/10.1007/978-3-476-03898-2terpretation says that, informally speaking, a process conditioned to avoid the boundary of a domain on a time interval will be far from the boundary at the end of the time interval, with high probability. An application of the parabolic boundary Harnack principle is also given.
攀登
发表于 2025-3-23 03:44:09
http://reply.papertrans.cn/20/1914/191324/191324_9.png
seduce
发表于 2025-3-23 06:53:38
https://doi.org/10.1007/978-3-319-04394-4"hot spots" conjecture; 60J65, 60H30, 60G17; Brownian motion; Neumann eigenfunction; coupling; heat equat