Malinger 发表于 2025-3-21 17:28:16
书目名称Bridging Algebra, Geometry, and Topology影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0190751<br><br> <br><br>书目名称Bridging Algebra, Geometry, and Topology影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0190751<br><br> <br><br>书目名称Bridging Algebra, Geometry, and Topology网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0190751<br><br> <br><br>书目名称Bridging Algebra, Geometry, and Topology网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0190751<br><br> <br><br>书目名称Bridging Algebra, Geometry, and Topology被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0190751<br><br> <br><br>书目名称Bridging Algebra, Geometry, and Topology被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0190751<br><br> <br><br>书目名称Bridging Algebra, Geometry, and Topology年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0190751<br><br> <br><br>书目名称Bridging Algebra, Geometry, and Topology年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0190751<br><br> <br><br>书目名称Bridging Algebra, Geometry, and Topology读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0190751<br><br> <br><br>书目名称Bridging Algebra, Geometry, and Topology读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0190751<br><br> <br><br>CONE 发表于 2025-3-21 20:19:23
http://reply.papertrans.cn/20/1908/190751/190751_2.png直言不讳 发表于 2025-3-22 01:53:40
http://reply.papertrans.cn/20/1908/190751/190751_3.png遭遇 发表于 2025-3-22 05:02:03
Hodge Invariants of Higher-Dimensional Analogues of Kodaira Surfaces,s, by using methods of toric geometry (see also ). Some higher-dimensional analogues of Kodaira surfaces are obtained as hypersurfaces in these Inoue manifolds. In this paper we construct another higher-dimensional analogues of primary Kodaira surfaces and we compute their invariants as the H能得到 发表于 2025-3-22 12:01:15
http://reply.papertrans.cn/20/1908/190751/190751_5.png斗争 发表于 2025-3-22 16:14:04
http://reply.papertrans.cn/20/1908/190751/190751_6.png保存 发表于 2025-3-22 19:09:39
http://reply.papertrans.cn/20/1908/190751/190751_7.pngFLAG 发表于 2025-3-23 00:10:09
Fibonacci Numbers and Self-Dual Lattice Structures for Plane Branches,ts needed to achieve its minimal embedded resolution. We show that there are .. topological types of blow-up complexity ., where .. is the .-th Fibonacci number. We introduce complexity-preserving operations on topological types which increase the multiplicity and we deduce that the maximal multipli飓风 发表于 2025-3-23 01:21:59
Four Generated, Squarefree, Monomial Ideals,d by three monomials of degrees . and a set of monomials of degrees ≥ . + 1, or by four special monomials of degrees .. If the Stanley depth of .∕. is ≤ . + 1 then the usual depth of .∕. is ≤ . + 1 too.关心 发表于 2025-3-23 08:12:05
http://reply.papertrans.cn/20/1908/190751/190751_10.png