eternal 发表于 2025-3-21 16:43:15
书目名称Brakke‘s Mean Curvature Flow影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0190340<br><br> <br><br>书目名称Brakke‘s Mean Curvature Flow影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0190340<br><br> <br><br>书目名称Brakke‘s Mean Curvature Flow网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0190340<br><br> <br><br>书目名称Brakke‘s Mean Curvature Flow网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0190340<br><br> <br><br>书目名称Brakke‘s Mean Curvature Flow被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0190340<br><br> <br><br>书目名称Brakke‘s Mean Curvature Flow被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0190340<br><br> <br><br>书目名称Brakke‘s Mean Curvature Flow年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0190340<br><br> <br><br>书目名称Brakke‘s Mean Curvature Flow年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0190340<br><br> <br><br>书目名称Brakke‘s Mean Curvature Flow读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0190340<br><br> <br><br>书目名称Brakke‘s Mean Curvature Flow读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0190340<br><br> <br><br>碎片 发表于 2025-3-21 23:23:55
https://doi.org/10.1007/978-3-642-18720-9.) at . ∈ .(.). Here we consider how one may characterize the normal velocity using integration. The reason for such a pursuit is that, in the end, we want to replace .(.) by a general varifold. To do so, let . be a non-negative “test function”.Monotonous 发表于 2025-3-22 02:05:42
http://reply.papertrans.cn/20/1904/190340/190340_3.png无法破译 发表于 2025-3-22 05:58:42
http://reply.papertrans.cn/20/1904/190340/190340_4.png冷漠 发表于 2025-3-22 11:12:02
Definition of the Brakke Flow,.) at . ∈ .(.). Here we consider how one may characterize the normal velocity using integration. The reason for such a pursuit is that, in the end, we want to replace .(.) by a general varifold. To do so, let . be a non-negative “test function”.弹药 发表于 2025-3-22 16:01:16
A General Existence Theorem for a Brakke Flow in Codimension One, some minor assumption, Brakke gave a proof of a time-global existence of rectifiable Brakke flow starting from the given data. When the initial data is an integral .-varifold, the obtained flow is also integral in the sense defined in Chap. ..pulmonary 发表于 2025-3-22 20:56:53
Allard Regularity Theory,ose that we have a varifold . ∈..(.) which happens to be a time-independent Brakke flow as we defined in Sect. .. This should mean that the normal velocity . is 0 and that . = . implies . = 0, which means that . is stationary. Let us adhere to the definition of the Brakke flow as in Definition . and check if this is indeed the case.Herbivorous 发表于 2025-3-22 22:57:29
Yoshihiro TonegawaIs the first exposition of Brakke’s mean curvature flow, a subject that interests many researchers.Uses accessible language, not highly technical terminology, for all readers interested in geometric m栖息地 发表于 2025-3-23 03:22:46
http://reply.papertrans.cn/20/1904/190340/190340_9.png严厉批评 发表于 2025-3-23 09:20:38
http://reply.papertrans.cn/20/1904/190340/190340_10.png