马具 发表于 2025-3-30 08:49:51
A Deep Supervision CNN Network for Brain Tumor Segmentationing stability and enable the encoder to extract richer visual features. The CBICA’s IPP’s evaluation of the segmentation results verifies the effectiveness of our method. The average Dice of ET, WT and TC are 0.7593, 0.8726 and 0.7879 respectively.GENRE 发表于 2025-3-30 14:39:15
http://reply.papertrans.cn/20/1904/190325/190325_52.png温和女孩 发表于 2025-3-30 19:48:59
http://reply.papertrans.cn/20/1904/190325/190325_53.pngPlatelet 发表于 2025-3-30 22:39:34
0302-9743 op, BrainLes 2020, the International Multimodal Brain Tumor Segmentation (BraTS) challenge, and the Computational Precision Medicine: Radiology-Pathology Challenge on Brain Tumor Classification (CPM-RadPath) challenge. These were held jointly at the 23rd Medical Image Computing for Computer Assistedfilial 发表于 2025-3-31 02:47:21
http://reply.papertrans.cn/20/1904/190325/190325_55.png歪曲道理 发表于 2025-3-31 07:59:54
Lightweight U-Nets for Brain Tumor Segmentationtiple Skinny networks over all image planes (axial, coronal, and sagittal), and form an ensemble containing such models. The experiments showed that our approach allows us to obtain accurate brain tumor delineation from multi-modal magnetic resonance images.原始 发表于 2025-3-31 10:36:06
http://reply.papertrans.cn/20/1904/190325/190325_57.png勾引 发表于 2025-3-31 13:26:46
http://reply.papertrans.cn/20/1904/190325/190325_58.png