Obstacle 发表于 2025-3-25 04:09:56
Deep Convolutional Neural Networks Using U-Net for Automatic Brain Tumor Segmentation in Multimodal ation datasets, which include a total of 351 multimodal MRI volumes of different patients with HGG and LGG tumors representing different shapes, giving promising and objective results close to manual segmentation performances obtained by experienced neuro-radiologists. On the challenge validation da愉快么 发表于 2025-3-25 08:44:50
http://reply.papertrans.cn/20/1904/190323/190323_22.png繁荣中国 发表于 2025-3-25 12:27:45
http://reply.papertrans.cn/20/1904/190323/190323_23.pngCcu106 发表于 2025-3-25 17:33:45
Multi-planar Spatial-ConvNet for Segmentation and Survival Prediction in Brain Cancer the decoder network localize and recover the object details more effectively. These connections allow the network to simultaneously incorporate high-level features along with pixel-level details. A new aggregated loss function helps in effectively handling data imbalance. The integrated segmentatiomoratorium 发表于 2025-3-26 00:00:19
http://reply.papertrans.cn/20/1904/190323/190323_25.pnglegislate 发表于 2025-3-26 04:02:14
http://reply.papertrans.cn/20/1904/190323/190323_26.png凹室 发表于 2025-3-26 06:42:06
http://reply.papertrans.cn/20/1904/190323/190323_27.png带伤害 发表于 2025-3-26 10:23:39
Glioma Prognosis: Segmentation of the Tumor and Survival Prediction Using Shape, Geometric and Clini regression on the extracted features using an artificial neural network (ANN). Our model achieves a mean dice score of 89.78%, 82.53% and 76.54% for the whole tumor, tumor core and enhancing tumor respectively in segmentation task and 67.9% in overall survival prediction task with the validation sediskitis 发表于 2025-3-26 14:26:02
http://reply.papertrans.cn/20/1904/190323/190323_29.pngIncorruptible 发表于 2025-3-26 19:30:46
http://reply.papertrans.cn/20/1904/190323/190323_30.png