ALE 发表于 2025-3-30 11:55:43

Elliptic Waldenfels Operators and Maximum Principlesudo-differential operators..In this chapter, following Bony–Courrège–Priouret [.] we prove various maximum principles for second-order, elliptic Waldenfels operators which play an essential role throughout the book.

blister 发表于 2025-3-30 14:49:06

http://reply.papertrans.cn/20/1901/190036/190036_52.png

phase-2-enzyme 发表于 2025-3-30 17:14:03

Proofs of Theorem 1.5, Part (ii) and Theorem 1.6n 13.1 general existence theorems for Feller semigroups are formulated in terms of elliptic boundary value problems with spectral parameter (Theorem 13.4). In Section 13.1 we study Feller semigroups with reflecting barrier (Theorem 13.17) and then, by using these Feller semigroups we construct Felle

Ardent 发表于 2025-3-30 23:02:52

9楼

我怕被刺穿 发表于 2025-3-31 01:09:34

9楼

谄媚于性 发表于 2025-3-31 06:35:08

9楼

overture 发表于 2025-3-31 11:33:03

10楼

laxative 发表于 2025-3-31 13:45:09

10楼

Charlatan 发表于 2025-3-31 20:33:52

10楼

Peristalsis 发表于 2025-3-31 23:41:12

10楼
页: 1 2 3 4 5 [6]
查看完整版本: Titlebook: Boundary Value Problems and Markov Processes; Functional Analysis Kazuaki Taira Book 2020Latest edition Springer Nature Switzerland AG 202