娴熟 发表于 2025-3-28 14:36:58

http://reply.papertrans.cn/20/1901/190033/190033_41.png

渐变 发表于 2025-3-28 21:04:02

http://reply.papertrans.cn/20/1901/190033/190033_42.png

能得到 发表于 2025-3-28 23:05:57

http://reply.papertrans.cn/20/1901/190033/190033_43.png

硬化 发表于 2025-3-29 06:59:41

http://reply.papertrans.cn/20/1901/190033/190033_44.png

乱砍 发表于 2025-3-29 08:04:51

http://reply.papertrans.cn/20/1901/190033/190033_45.png

连锁,连串 发表于 2025-3-29 13:56:37

Conclusions and Future Directions, not needed for the application to boundary value problems. However, it nicely illustrates the usefulness of our choice for the interval J (.) compared to Auscher (Mem Am Math Soc 186(871):xviii+75, 2007) and connects with the theory of Gaussian estimates in the first chapter of Auscher and Tchamitc

optional 发表于 2025-3-29 18:08:31

Conclusions and Future Directions,ém Soc Math Fr (N.S.) (144):vii+164, 2016). Although we argue independently of this reference concerning this particular issue, in this chapter, we make the bridge and characterize their admissible range of exponents in terms of our critical numbers.

平静生活 发表于 2025-3-29 21:22:11

http://reply.papertrans.cn/20/1901/190033/190033_48.png

palette 发表于 2025-3-30 03:00:47

https://doi.org/10.1007/978-1-4020-8450-8ess that have been announced in Sect. .. We also compare them to what can be obtained by the general first-order approach (Amenta and Auscher, Elliptic Boundary Value Problems with Fractional Regularity Data. American Mathematical Society, Providence, 2018) when specialized to elliptic systems in bl

Ganglion-Cyst 发表于 2025-3-30 04:17:20

http://reply.papertrans.cn/20/1901/190033/190033_50.png
页: 1 2 3 4 [5] 6 7
查看完整版本: Titlebook: Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure; Pascal Auscher,Moritz Egert Book 2023 The Editor(s) (i