Obsolescent 发表于 2025-3-21 16:42:49
书目名称Bosonization of Interacting Fermions in Arbitrary Dimensions影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0189916<br><br> <br><br>书目名称Bosonization of Interacting Fermions in Arbitrary Dimensions影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0189916<br><br> <br><br>书目名称Bosonization of Interacting Fermions in Arbitrary Dimensions网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0189916<br><br> <br><br>书目名称Bosonization of Interacting Fermions in Arbitrary Dimensions网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0189916<br><br> <br><br>书目名称Bosonization of Interacting Fermions in Arbitrary Dimensions被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0189916<br><br> <br><br>书目名称Bosonization of Interacting Fermions in Arbitrary Dimensions被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0189916<br><br> <br><br>书目名称Bosonization of Interacting Fermions in Arbitrary Dimensions年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0189916<br><br> <br><br>书目名称Bosonization of Interacting Fermions in Arbitrary Dimensions年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0189916<br><br> <br><br>书目名称Bosonization of Interacting Fermions in Arbitrary Dimensions读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0189916<br><br> <br><br>书目名称Bosonization of Interacting Fermions in Arbitrary Dimensions读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0189916<br><br> <br><br>完成才能战胜 发表于 2025-3-21 21:12:58
http://reply.papertrans.cn/19/1900/189916/189916_2.png可以任性 发表于 2025-3-22 01:15:16
https://doi.org/10.1007/978-3-662-48784-6ating the density-density correlation function within the RPA. We develop a general formalism for obtaining corrections to the Gaussian approximation, and show that these are nothing but the local-field corrections to the RPA. Some of the results presented in this chapter has been published in .溃烂 发表于 2025-3-22 06:25:14
http://reply.papertrans.cn/19/1900/189916/189916_4.pngAlbumin 发表于 2025-3-22 10:13:02
http://reply.papertrans.cn/19/1900/189916/189916_5.png正论 发表于 2025-3-22 14:36:48
http://reply.papertrans.cn/19/1900/189916/189916_6.png铁塔等 发表于 2025-3-22 17:59:58
http://reply.papertrans.cn/19/1900/189916/189916_7.pngOligarchy 发表于 2025-3-23 01:12:12
https://doi.org/10.1007/978-3-8350-5458-5lem in the work [.]. It turns out, however, that in physically relevant cases quantitatively correct results for the single-particle Green’s function can only be obtained if one retains the quadratic terms in the expansion of the energy dispersion close to the Fermi surface.在驾驶 发表于 2025-3-23 04:58:14
http://reply.papertrans.cn/19/1900/189916/189916_9.png使人入神 发表于 2025-3-23 05:54:35
Fermions in a stochastic mediums equivalent with conventional perturbation theory based on the lowest order Born approximation. We also critically discuss the linearization of the energy dispersion, and give a simple example where this approximation leads to an unphysical result. Some of the calculations described in this chapter have been published in [.].