出汗 发表于 2025-3-23 13:38:20
Echte Erziehung aus Frankreich,and unirationality, R-equivalence on rational points, Chow groups of zero-cycles, Galois action on the Picard group, Brauer group, higher unramified cohomology, global differentials, specialisation method (via R-equivalence), geometrically rational surfaces, cubic hypersurfaces.暂停,间歇 发表于 2025-3-23 13:51:10
https://doi.org/10.1007/978-3-531-94009-0es and some other fibres which are not even stably rational. This used the specialisation method of Voisin, as extended by Pirutka and myself. Under specific circumstances, a simplified version of the specialisation method was produced by Schreieder, leading to a simpler proof of the HPT example. I高度赞扬 发表于 2025-3-23 18:50:47
http://reply.papertrans.cn/19/1889/188839/188839_13.pngoccult 发表于 2025-3-23 23:37:17
https://doi.org/10.1007/978-3-658-32882-5m of constructing Bridgeland stability conditions on these categories and we then investigate the geometry of the corresponding moduli spaces of stable objects. We discuss a number of consequences related to cubic fourfolds including new proofs of the Torelli theorem and of the integral Hodge conjecEclampsia 发表于 2025-3-24 02:21:08
http://reply.papertrans.cn/19/1889/188839/188839_15.pngmitten 发表于 2025-3-24 08:47:30
http://reply.papertrans.cn/19/1889/188839/188839_16.pngbrowbeat 发表于 2025-3-24 13:00:09
http://reply.papertrans.cn/19/1889/188839/188839_17.pngCupping 发表于 2025-3-24 15:20:50
http://reply.papertrans.cn/19/1889/188839/188839_18.png和音 发表于 2025-3-24 20:52:18
http://reply.papertrans.cn/19/1889/188839/188839_19.png加入 发表于 2025-3-25 02:12:36
,Durchführung der Befragung der Mentoren,ge structures that come naturally associated with a cubic fourfold. The emphasis is on the Hodge and lattice theoretic aspects with many technical details worked out explicitly. More geometric or derived results are only hinted at.