subordinate 发表于 2025-3-23 12:08:13

http://reply.papertrans.cn/19/1863/186225/186225_11.png

aplomb 发表于 2025-3-23 15:45:46

Energy Systemshttp://image.papertrans.cn/b/image/186225.jpg

Misgiving 发表于 2025-3-23 18:24:07

http://reply.papertrans.cn/19/1863/186225/186225_13.png

疲劳 发表于 2025-3-23 22:45:41

978-3-662-51625-6Springer-Verlag Berlin Heidelberg 2015

Organonitrile 发表于 2025-3-24 04:34:30

Introduction,istence of an optimal solution are formulated. Using a continuous knapsack problem with right-hand side perturbation in the lower level both formulations are illustrated. In the last part a number of applications of the problem are given.

可忽略 发表于 2025-3-24 09:41:38

http://reply.papertrans.cn/19/1863/186225/186225_16.png

凶残 发表于 2025-3-24 14:11:38

http://reply.papertrans.cn/19/1863/186225/186225_17.png

衰弱的心 发表于 2025-3-24 15:06:37

http://reply.papertrans.cn/19/1863/186225/186225_18.png

正常 发表于 2025-3-24 21:40:25

Reduction of Bilevel Programming to a Single Level Problem,evel problem, the bilevel optimization problem can be transformed into a single-level optimization problem. Two of these transformations are fully equivalent to the bilevel problem, the MPEC is not. Using these transformations, necessary conditions for local optimal solutions can be formulated: In t

Charitable 发表于 2025-3-25 01:06:28

Convex Bilevel Programs,eneral, a necessary optimality condition for a convex simple bilevel problem does not need to be sufficient. An adapted necessary and sufficient optimality condition is derived using tools from cone-convex optimization and a gradient type descent method is suggested which combines the use of a conve
页: 1 [2] 3 4 5
查看完整版本: Titlebook: Bilevel Programming Problems; Theory, Algorithms a Stephan Dempe,Vyacheslav Kalashnikov,Nataliya Kala Book 2015 Springer-Verlag Berlin Heid