Mottled 发表于 2025-3-21 19:05:14

书目名称Big Data Analytics and Knowledge Discovery影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0185611<br><br>        <br><br>书目名称Big Data Analytics and Knowledge Discovery影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0185611<br><br>        <br><br>书目名称Big Data Analytics and Knowledge Discovery网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0185611<br><br>        <br><br>书目名称Big Data Analytics and Knowledge Discovery网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0185611<br><br>        <br><br>书目名称Big Data Analytics and Knowledge Discovery被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0185611<br><br>        <br><br>书目名称Big Data Analytics and Knowledge Discovery被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0185611<br><br>        <br><br>书目名称Big Data Analytics and Knowledge Discovery年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0185611<br><br>        <br><br>书目名称Big Data Analytics and Knowledge Discovery年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0185611<br><br>        <br><br>书目名称Big Data Analytics and Knowledge Discovery读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0185611<br><br>        <br><br>书目名称Big Data Analytics and Knowledge Discovery读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0185611<br><br>        <br><br>

progestin 发表于 2025-3-21 23:01:40

Benchmarking Data Lakes Featuring Structured and Unstructured Data with DLBenchdata lake systems. However, these proposals are difficult to evaluate as there are no commonly shared criteria for comparing data lake systems. Thus, we introduce DLBench, a benchmark to evaluate and compare data lake implementations that support textual and/or tabular contents. More concretely, we

Ordeal 发表于 2025-3-22 02:51:02

Towards an Adaptive Multidimensional Partitioning for Accelerating Spark SQL partitioning and data allocation algorithms, but they suffer when handling dynamic changes in query workload. On the other hand, Spark SQL has become a solution to process query workloads on big data, outside the DBMS realm. Unfortunately, Spark SQL incurs into significant random disk I/O cost, bec

LASH 发表于 2025-3-22 07:13:26

Selecting Subexpressions to Materialize for Dynamic Large-Scale Workloadssub-expressions. More recently, a few largely industry-led studies have focussed on the problem of identifying beneficial sub-expressions for large-scale workloads running outside of a DBMS for materialization purposes. However, these works have unfortunately ignored the large-scale workloads runnin

压倒 发表于 2025-3-22 10:22:35

A Chain Composite Item Recommender for Lifelong Pathwaysr fulfilling a personal lifelong project. This problem raises some specific challenges, since the recommendation process is constrained by the user profile, the time they can devote to the actions in the pathway, the obligation to smooth the learning curve of the user. We model lifelong pathways as

宫殿般 发表于 2025-3-22 15:05:05

http://reply.papertrans.cn/19/1857/185611/185611_6.png

强行引入 发表于 2025-3-22 17:41:06

http://reply.papertrans.cn/19/1857/185611/185611_7.png

GUISE 发表于 2025-3-22 23:28:32

Universal Storage Adaption for Distributed RDF-Triple StoresResource Description Framework (RDF) plays a big role in modelling and linking web data and their relations. Dedicated systems (RDF stores/triple stores) were designed to store and query the RDF data. Due to the size of RDF data, a distributed RDF store may use several federated working nodes to sto

监禁 发表于 2025-3-23 03:29:38

http://reply.papertrans.cn/19/1857/185611/185611_9.png

Fissure 发表于 2025-3-23 06:43:47

Document Ranking for Curated Document Databases Using BERT and Knowledge Graph Embeddings: Introducitention has been given to the use of various document ranking algorithms to support the maintenance of CDDs. The typical approach is to represent the update document collection using a form of word embedding and to input this into a ranking model; the resulting document rankings can then be used to
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Big Data Analytics and Knowledge Discovery; 23rd International C Matteo Golfarelli,Robert Wrembel,Ismail Khalil Conference proceedings 2021