ineluctable 发表于 2025-3-25 04:18:41

IntroductionThis chapter introduces the setting in which we shall study bifurcations without parameters. We compare it with classical bifurcation theory and give an overview and classification of the results presented in the following chapters.

唤醒 发表于 2025-3-25 11:16:55

CosymmetriesCosymmetries have been introduced by Yudovich and Kurakin to study limit cycles near manifolds of equilibria via Lyapunov-Schmidt reduction . They turn out to be equivalent to the existence of manifolds of equilibria, provided some non-degeneracy conditions are satisfied.

faultfinder 发表于 2025-3-25 14:14:05

http://reply.papertrans.cn/19/1856/185547/185547_23.png

易受骗 发表于 2025-3-25 17:38:40

Poincaré-Andronov-Hopf BifurcationWithout parameters, no periodic orbits bifurcate. Depending on the drift condition, two cases appear. Both are discussed in this chapter.

COLON 发表于 2025-3-25 21:58:45

http://reply.papertrans.cn/19/1856/185547/185547_25.png

Lamina 发表于 2025-3-26 03:41:26

http://reply.papertrans.cn/19/1856/185547/185547_26.png

exigent 发表于 2025-3-26 07:05:43

http://reply.papertrans.cn/19/1856/185547/185547_27.png

圆桶 发表于 2025-3-26 08:41:40

http://reply.papertrans.cn/19/1856/185547/185547_28.png

悬挂 发表于 2025-3-26 16:20:09

https://doi.org/10.1007/978-3-319-10777-634C23,34C20,34C37,37G99,35B32; Bifurcation without parameters; Equilibria; Manifolds; Nonlinear dynamica

Nebulizer 发表于 2025-3-26 20:18:14

http://reply.papertrans.cn/19/1856/185547/185547_30.png
页: 1 2 [3] 4 5 6
查看完整版本: Titlebook: Bifurcation without Parameters; Stefan Liebscher Book 2015 The Editor(s) (if applicable) and The Author(s), under exclusive license to Spr