FECT 发表于 2025-3-23 11:01:04

http://reply.papertrans.cn/19/1856/185533/185533_11.png

北京人起源 发表于 2025-3-23 16:50:48

,Versuchsanordnung und -durchführung,s. The generic bifurcations of the periodic solution are known as codimension one bifurcations: tangent bifurcation, period doubling bifurcation and the Hopf bifurcation. At the parameters for which bifurcation occurs, if a periodic solution satisfies two bifurcation conditions, then the bifurcation

PALMY 发表于 2025-3-23 18:44:46

Focused Issues in Family Therapyions. The computer analysis is carried out for the oscillations of two types of a Josephson element, one of which is a tunnel type and the other a bridge type. The Josephson circuits considered here are an rf-driven circuit, an autonomous oscillation circuit and a distributed parameter circuit. The

空气 发表于 2025-3-23 22:55:06

Somalia: Better Late than Never,amics, is discussed as a simple but prototypical model to describe bifurcation from regular to chaotic behaviour. It is considered: (i) to check the reliability and computational efficiency of numerical procedures for obtaining the system response and of quantitative measures for identifying chaos;

modifier 发表于 2025-3-24 03:15:51

http://reply.papertrans.cn/19/1856/185533/185533_15.png

muscle-fibers 发表于 2025-3-24 09:53:15

http://reply.papertrans.cn/19/1856/185533/185533_16.png

繁荣地区 发表于 2025-3-24 12:51:50

http://reply.papertrans.cn/19/1856/185533/185533_17.png

Heterodoxy 发表于 2025-3-24 16:55:13

Problemstellung und Stand der Forschung,ical dynamical chaos are retained but, typically, on finite and different time scales only. The necessary reformulation of the ergodic and algorithmic theories, as parts of the general theory of dynamical systems, is discussed. A number of specific unsolved problems is listed.

自然环境 发表于 2025-3-24 21:14:35

http://reply.papertrans.cn/19/1856/185533/185533_19.png

含水层 发表于 2025-3-25 00:13:12

http://reply.papertrans.cn/19/1856/185533/185533_20.png
页: 1 [2] 3 4 5
查看完整版本: Titlebook: Bifurcation and Chaos; Theory and Applicati Jan Awrejcewicz Book 1995 Springer-Verlag Berlin Heidelberg 1995 bifurcation.chaos.dynamics.non