叶子 发表于 2025-3-21 20:03:07
书目名称Bifurcation Dynamics of a Damped Parametric Pendulum影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0185524<br><br> <br><br>书目名称Bifurcation Dynamics of a Damped Parametric Pendulum影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0185524<br><br> <br><br>书目名称Bifurcation Dynamics of a Damped Parametric Pendulum网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0185524<br><br> <br><br>书目名称Bifurcation Dynamics of a Damped Parametric Pendulum网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0185524<br><br> <br><br>书目名称Bifurcation Dynamics of a Damped Parametric Pendulum被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0185524<br><br> <br><br>书目名称Bifurcation Dynamics of a Damped Parametric Pendulum被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0185524<br><br> <br><br>书目名称Bifurcation Dynamics of a Damped Parametric Pendulum年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0185524<br><br> <br><br>书目名称Bifurcation Dynamics of a Damped Parametric Pendulum年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0185524<br><br> <br><br>书目名称Bifurcation Dynamics of a Damped Parametric Pendulum读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0185524<br><br> <br><br>书目名称Bifurcation Dynamics of a Damped Parametric Pendulum读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0185524<br><br> <br><br>远地点 发表于 2025-3-21 21:09:40
http://reply.papertrans.cn/19/1856/185524/185524_2.png使困惑 发表于 2025-3-22 04:10:15
Travelable Periodic Motions, the pendulum. Using such fictitious functions, we can easily observe the motion complexity of angular displacement, and the coefficient .>0 in the fictitious function is arbitrarily chosen. Without loss of generality, for the Fourier series of velocity, the symbols for harmonic amplitudes and phase最高峰 发表于 2025-3-22 05:33:56
2573-3168 . The non-travelable and travelable periodic motions on the bifurcation trees are discovered. Through the bifurcation trees of travelable and non-travelable per978-3-031-79644-9978-3-031-79645-6Series ISSN 2573-3168 Series E-ISSN 2573-3176ALIEN 发表于 2025-3-22 09:13:53
http://reply.papertrans.cn/19/1856/185524/185524_5.pngneuron 发表于 2025-3-22 14:26:47
https://doi.org/10.1007/978-94-009-3861-8non-polynomial dynamical systems. The parametric pendulum will be as an example to be investigated, and the corresponding methodology and results can help one understand motion complexity in nonlinear dynamical systems. A parametric pendulum system is very simple but it possesses rich and complicatePANIC 发表于 2025-3-22 19:21:38
http://reply.papertrans.cn/19/1856/185524/185524_7.pngNAV 发表于 2025-3-22 23:43:14
http://reply.papertrans.cn/19/1856/185524/185524_8.png的’ 发表于 2025-3-23 04:58:45
Excitation Functions With Finite Rise Time,riodic motion can be expressed by discrete points through discrete mappings of continuous dynamical systems. The method is stated through the following theorem. From Luo , we have the following theorem.坚毅 发表于 2025-3-23 05:53:16
Diffus verteiltes interstellares Gas,arametrically excited pendulum. The stability and bifurcations of periodic motions are also illustrated through eigenvalue analysis. The solid and dashed curves represent the stable and unstable motions, respectively. The black and red colors are for paired asymmetric motions. The acronyms “SN” and