Randomized
发表于 2025-3-21 19:23:29
书目名称Benchmarking, Measuring, and Optimizing影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0183393<br><br> <br><br>书目名称Benchmarking, Measuring, and Optimizing影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0183393<br><br> <br><br>书目名称Benchmarking, Measuring, and Optimizing网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0183393<br><br> <br><br>书目名称Benchmarking, Measuring, and Optimizing网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0183393<br><br> <br><br>书目名称Benchmarking, Measuring, and Optimizing被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0183393<br><br> <br><br>书目名称Benchmarking, Measuring, and Optimizing被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0183393<br><br> <br><br>书目名称Benchmarking, Measuring, and Optimizing年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0183393<br><br> <br><br>书目名称Benchmarking, Measuring, and Optimizing年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0183393<br><br> <br><br>书目名称Benchmarking, Measuring, and Optimizing读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0183393<br><br> <br><br>书目名称Benchmarking, Measuring, and Optimizing读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0183393<br><br> <br><br>
口音在加重
发表于 2025-3-21 21:41:41
http://reply.papertrans.cn/19/1834/183393/183393_2.png
Bouquet
发表于 2025-3-22 04:02:17
Early Experience in Benchmarking Edge AI Processors with Object Detection Workloadse applications, especially for Edge Computing scenarios, due to its high power consumption and high cost. Thus, researchers and engineers have spent a lot of effort on designing edge-side artificial intelligence (AI) processors recently. Because of different edge-side application requirements, edge
皮萨
发表于 2025-3-22 04:34:00
http://reply.papertrans.cn/19/1834/183393/183393_4.png
Foam-Cells
发表于 2025-3-22 11:23:56
http://reply.papertrans.cn/19/1834/183393/183393_5.png
预示
发表于 2025-3-22 14:28:22
Exploring the Performance Bound of Cambricon Accelerator in End-to-End Inference Scenarioient hardware accelerators for machine learning, especially for deep learning, covering from edge embedded devices to cloud data centers. However, in the real application scenario, the complicated software stack and the extra overhead (memory copy) hinder the full exploitation of the accelerator per
condemn
发表于 2025-3-22 17:27:15
Improve Image Classification by Convolutional Network on Cambricon issue. In this paper, we exploit, evaluate and validate the performance of the ResNet101 image classification network on Cambricon with Cambricon Caffe framework, demonstrating the availability and ease of use of this system. Experiments with various operational modes and the processes of model inf
ACRID
发表于 2025-3-23 01:05:29
RVTensor: A Light-Weight Neural Network Inference Framework Based on the RISC-V Architectureas attracted the attention of IoT vendors. However, research on the IoT scenario inference framework based on the RISC-V architecture is rare. Popular frame-works such as MXNet, TensorFlow, and Caffe are based on the X86 and ARM architectures, and they are not optimized for the IoT scenarios. We pro
革新
发表于 2025-3-23 04:33:25
http://reply.papertrans.cn/19/1834/183393/183393_9.png
maudtin
发表于 2025-3-23 06:45:53
http://reply.papertrans.cn/19/1834/183393/183393_10.png