不服从 发表于 2025-3-21 19:27:06

书目名称Bayesian Statistical Modeling with Stan, R, and Python影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0181881<br><br>        <br><br>书目名称Bayesian Statistical Modeling with Stan, R, and Python影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0181881<br><br>        <br><br>书目名称Bayesian Statistical Modeling with Stan, R, and Python网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0181881<br><br>        <br><br>书目名称Bayesian Statistical Modeling with Stan, R, and Python网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0181881<br><br>        <br><br>书目名称Bayesian Statistical Modeling with Stan, R, and Python被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0181881<br><br>        <br><br>书目名称Bayesian Statistical Modeling with Stan, R, and Python被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0181881<br><br>        <br><br>书目名称Bayesian Statistical Modeling with Stan, R, and Python年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0181881<br><br>        <br><br>书目名称Bayesian Statistical Modeling with Stan, R, and Python年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0181881<br><br>        <br><br>书目名称Bayesian Statistical Modeling with Stan, R, and Python读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0181881<br><br>        <br><br>书目名称Bayesian Statistical Modeling with Stan, R, and Python读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0181881<br><br>        <br><br>

强所 发表于 2025-3-21 23:10:49

http://reply.papertrans.cn/19/1819/181881/181881_2.png

无表情 发表于 2025-3-22 02:45:47

http://reply.papertrans.cn/19/1819/181881/181881_3.png

deficiency 发表于 2025-3-22 04:54:22

Vaccine Development for Cytomegalovirusyze spatial data. It has a wide range of application and can be applied to one-dimensional data, two-dimensional grid data type, and geospatial map data. Later, we will see how a Gaussian process (GP) can be considered as a generalization of a GMRF. A GP can represent smooth functions, and usually gives high prediction performance.

动物 发表于 2025-3-22 10:34:00

http://reply.papertrans.cn/19/1819/181881/181881_5.png

BADGE 发表于 2025-3-22 16:55:13

http://reply.papertrans.cn/19/1819/181881/181881_6.png

尖牙 发表于 2025-3-22 19:12:03

Spatial Data Analysis Using Gaussian Markov Random Fields and Gaussian Processesyze spatial data. It has a wide range of application and can be applied to one-dimensional data, two-dimensional grid data type, and geospatial map data. Later, we will see how a Gaussian process (GP) can be considered as a generalization of a GMRF. A GP can represent smooth functions, and usually gives high prediction performance.

有组织 发表于 2025-3-23 00:45:11

Usages of MCMC Samples from Posterior and Predictive Distributionsons and predictive distributions were only kept on very basic levels, such as computing the intervals and visualizations. In this chapter, we will introduce more advanced usages of the MCMC sample. They would be helpful in practice because it is very common to encounter the situation where we need to extract more information from the MCMC sample.

Bumble 发表于 2025-3-23 05:02:09

https://doi.org/10.1007/978-981-19-4755-1Stan; Bayesian Modeling; Statistical Modeling; R; RStan; Python

crumble 发表于 2025-3-23 05:56:12

http://reply.papertrans.cn/19/1819/181881/181881_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Bayesian Statistical Modeling with Stan, R, and Python; Kentaro Matsuura Book 2022 Springer Nature Singapore Pte Ltd. 2022 Stan.Bayesian M