生来 发表于 2025-3-25 03:20:48

http://reply.papertrans.cn/19/1819/181873/181873_21.png

喊叫 发表于 2025-3-25 08:00:53

B. A. Sullenger,R. R. White,C. P. Rusconit. . introduces the sequential optimization method known as Thompson sampling, also based on GP; finally, Sect. . presents other probabilistic models which might represent, in some cases, a suitable alternative to GP.

保守 发表于 2025-3-25 13:49:53

http://reply.papertrans.cn/19/1819/181873/181873_23.png

背叛者 发表于 2025-3-25 17:35:07

http://reply.papertrans.cn/19/1819/181873/181873_24.png

Between 发表于 2025-3-25 20:42:18

Book 2019will help bring readers to a full understanding of the basic Bayesian Optimization framework and gain an appreciation of its potential for emerging application areas. It will be of particular interest to the data science, computer science, optimization, and engineering communities..

单调女 发表于 2025-3-26 00:14:57

http://reply.papertrans.cn/19/1819/181873/181873_26.png

分开 发表于 2025-3-26 04:39:48

http://reply.papertrans.cn/19/1819/181873/181873_27.png

Entreaty 发表于 2025-3-26 09:21:40

http://reply.papertrans.cn/19/1819/181873/181873_28.png

真实的人 发表于 2025-3-26 16:33:51

Software Resources,nt non-Bayesian global optimization software. The software in this section refers, basically, to the box-constrained case, with the exception of Predictive Entropy Search with Constraints (PESC) which is included in the open source package Spearmint (.).

正式演说 发表于 2025-3-26 17:38:46

7楼
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Bayesian Optimization and Data Science; Francesco Archetti,Antonio Candelieri Book 2019 The Author(s), under exclusive license to Springer