变成小松鼠 发表于 2025-3-21 17:33:48
书目名称Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0181866<br><br> <br><br>书目名称Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0181866<br><br> <br><br>书目名称Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0181866<br><br> <br><br>书目名称Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0181866<br><br> <br><br>书目名称Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0181866<br><br> <br><br>书目名称Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0181866<br><br> <br><br>书目名称Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0181866<br><br> <br><br>书目名称Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0181866<br><br> <br><br>书目名称Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0181866<br><br> <br><br>书目名称Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0181866<br><br> <br><br>Mercurial 发表于 2025-3-21 20:42:47
Networks of a graph and the interactions (direct dependences) as directed edges (links or arcs) between the vertices. Any pair of unconnected vertices of such a graph indicates (conditional) independence between the variables represented by these vertices under particular circumstances that can easily be re6Applepolish 发表于 2025-3-22 02:01:38
Probabilitiesrsive factorization of a joint probability distribution into a product of lower-dimensional conditional probability distributions. First, any joint probability distribution can be decomposed (or factorized) into a product of conditional distributions of different dimensionality, where the dimensiona值得尊敬 发表于 2025-3-22 07:41:52
http://reply.papertrans.cn/19/1819/181866/181866_4.pngMelatonin 发表于 2025-3-22 11:02:51
http://reply.papertrans.cn/19/1819/181866/181866_5.png似少年 发表于 2025-3-22 13:55:16
Eliciting the Model]. The structure of a probabilistic network is often referred to as the qualitative part of the network, whereas the parameters are often referred to as its quantitative part. As the parameters of a model are determined by its structure, the model elicitation process always proceeds in two consecutiDOSE 发表于 2025-3-22 20:21:56
http://reply.papertrans.cn/19/1819/181866/181866_7.png安定 发表于 2025-3-22 23:33:18
Data-Driven Modelingases and expert knowledge consists of two main steps. The first step is to induce the structure of the model, that is, the DAG, while the second step is to estimate the parameters of the model as defined by the structure. In this chapter we consider only discrete Bayesian networks. Thus, the task of玉米棒子 发表于 2025-3-23 01:57:55
http://reply.papertrans.cn/19/1819/181866/181866_9.png玩笑 发表于 2025-3-23 06:52:30
http://reply.papertrans.cn/19/1819/181866/181866_10.png