轻快带来危险 发表于 2025-3-30 08:40:47
Empirical Bayesian Spatial Prediction Using Waveletsng, especially when the underlying signal has a sparse wavelet representation. Wavelet shrinkage based on the Bayesian approach involves specifying a prior distribution for the wavelet coefficients. In this chapter, we consider a Gaussian prior with . means for wavelet coefficients, which is differeheirloom 发表于 2025-3-30 13:02:03
http://reply.papertrans.cn/19/1819/181852/181852_52.png难管 发表于 2025-3-30 16:46:13
http://reply.papertrans.cn/19/1819/181852/181852_53.png惩罚 发表于 2025-3-30 22:27:22
http://reply.papertrans.cn/19/1819/181852/181852_54.pngExterior 发表于 2025-3-31 04:42:11
http://reply.papertrans.cn/19/1819/181852/181852_55.pngCeliac-Plexus 发表于 2025-3-31 08:00:53
http://reply.papertrans.cn/19/1819/181852/181852_56.png新手 发表于 2025-3-31 10:34:13
https://doi.org/10.1007/978-981-13-6332-0hemselves. Furthermore, we consider Bayesian wavelet-based function estimation that gives rise to different types of wavelet shrinkage in non-parametric regression. Finally, we discuss an extension of the proposed Bayesian model by considering random functions generated by an overcomplete wavelet dictionary.出生 发表于 2025-3-31 13:52:47
http://reply.papertrans.cn/19/1819/181852/181852_58.png野蛮 发表于 2025-3-31 17:45:47
http://reply.papertrans.cn/19/1819/181852/181852_59.pngDemulcent 发表于 2025-3-31 22:24:11
https://doi.org/10.1007/978-3-319-66957-1hat estimators using basis averaging outperform estimators using a single basis and also estimators that first select the basis having the highest posterior probability and then estimate the unknown regression function using that basis.