Patrimony 发表于 2025-3-25 04:05:39

Introduction to Bayesian Computation,simply computes values of the posterior on a grid of points and then approximates the continuous posterior by a discrete posterior that is concentrated on the values of the grid. This brute-force method can be generally applied for oneand two-parameter problems such as those illustrated in Chapters 3 and 4.

旧病复发 发表于 2025-3-25 11:12:18

Model Comparison,with a “streaky” model where the probability of a success may change over a season. In the second application, we illustrate the computation of Bayes factors against independence in a two-way contingency table.

JAMB 发表于 2025-3-25 12:21:12

http://reply.papertrans.cn/19/1819/181833/181833_23.png

落叶剂 发表于 2025-3-25 15:50:16

Introduction to Bayesian Thinking,rtion. Before taking data, one has beliefs about the value of the proportion and one models his or her beliefs in terms of a prior distribution. We will illustrate the use of different functional forms for this prior. After data have been observed, one updates one’s beliefs about the proportion by t

Antarctic 发表于 2025-3-25 23:17:52

http://reply.papertrans.cn/19/1819/181833/181833_25.png

FADE 发表于 2025-3-26 01:12:20

http://reply.papertrans.cn/19/1819/181833/181833_26.png

坚毅 发表于 2025-3-26 07:02:17

http://reply.papertrans.cn/19/1819/181833/181833_27.png

听觉 发表于 2025-3-26 09:44:46

http://reply.papertrans.cn/19/1819/181833/181833_28.png

归功于 发表于 2025-3-26 13:06:14

http://reply.papertrans.cn/19/1819/181833/181833_29.png

tendinitis 发表于 2025-3-26 19:06:10

http://reply.papertrans.cn/19/1819/181833/181833_30.png
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Bayesian Computation with R; Jim Albert Textbook 20071st edition Springer-Verlag New York 2007 Bayesian Inference.Hierarchical modeling.Ma