开脱 发表于 2025-3-21 19:09:31

书目名称Bayesian Computation with R影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0181832<br><br>        <br><br>书目名称Bayesian Computation with R影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0181832<br><br>        <br><br>书目名称Bayesian Computation with R网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0181832<br><br>        <br><br>书目名称Bayesian Computation with R网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0181832<br><br>        <br><br>书目名称Bayesian Computation with R被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0181832<br><br>        <br><br>书目名称Bayesian Computation with R被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0181832<br><br>        <br><br>书目名称Bayesian Computation with R年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0181832<br><br>        <br><br>书目名称Bayesian Computation with R年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0181832<br><br>        <br><br>书目名称Bayesian Computation with R读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0181832<br><br>        <br><br>书目名称Bayesian Computation with R读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0181832<br><br>        <br><br>

失误 发表于 2025-3-21 22:29:03

Introduction to Bayesian Thinking,rtion. Before taking data, one has beliefs about the value of the proportion and one models his or her beliefs in terms of a prior distribution. We will illustrate the use of different functional forms for this prior. After data have been observed, one updates one’s beliefs about the proportion by c

修饰语 发表于 2025-3-22 03:15:21

Single-Parameter Models,sian inference for a variance for a normal population and inference for a Poisson mean when informative prior information is available. For both problems, summarization of the posterior distribution is facilitated by the use of R functions to compute and simulate distributions from the exponential f

Diluge 发表于 2025-3-22 05:54:17

http://reply.papertrans.cn/19/1819/181832/181832_4.png

胆小鬼 发表于 2025-3-22 12:38:25

Markov Chain Monte Carlo Methods,ior distribution, but it can be difficult to set up since it requires the construction of a suitable proposal density. Importance sampling and SIR algorithms are also general-purpose algorithms, but they also require proposal densities that may be difficult to find for high-dimensional problems. In

harpsichord 发表于 2025-3-22 15:41:57

http://reply.papertrans.cn/19/1819/181832/181832_6.png

蒸发 发表于 2025-3-22 20:52:03

http://reply.papertrans.cn/19/1819/181832/181832_7.png

OREX 发表于 2025-3-23 00:05:03

http://reply.papertrans.cn/19/1819/181832/181832_8.png

SEED 发表于 2025-3-23 04:44:01

http://reply.papertrans.cn/19/1819/181832/181832_9.png

Hot-Flash 发表于 2025-3-23 06:31:42

http://reply.papertrans.cn/19/1819/181832/181832_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Bayesian Computation with R; Jim Albert Textbook 2009Latest edition Springer-Verlag New York 2009 Bayesian Inference.Hierarchical modeling