中国纪念碑 发表于 2025-3-28 16:39:04
J.H. Kühn,M. Steinhauser,M. Tentyukovthe title of the chapter is a convenient tool of investigation. Further we will see that we can apply it not only in the discussion of the continuity but in the investigation of other properties of solution spaces, for instance, in the proof of the existence theorems.有节制 发表于 2025-3-28 21:54:03
http://reply.papertrans.cn/19/1812/181181/181181_42.png斜 发表于 2025-3-28 23:10:58
http://reply.papertrans.cn/19/1812/181181/181181_43.pngforebear 发表于 2025-3-29 04:44:38
http://reply.papertrans.cn/19/1812/181181/181181_44.pnggruelling 发表于 2025-3-29 09:54:42
http://reply.papertrans.cn/19/1812/181181/181181_45.png小画像 发表于 2025-3-29 11:52:57
http://reply.papertrans.cn/19/1812/181181/181181_46.pngKeratin 发表于 2025-3-29 17:58:09
Peter Marquard,Matthias SteinhauserIn this chapter we look at what aspect the notion of the change of variables takes in framework of our theory. We also take some further steps in the development of our topological tools.发电机 发表于 2025-3-29 20:00:32
https://doi.org/10.1007/978-3-319-47066-5In this chapter we consider some of the simplest cases of the application of developed tools. We also compare our methods with the classical theory.gimmick 发表于 2025-3-30 00:18:30
http://reply.papertrans.cn/19/1812/181181/181181_49.pngBUOY 发表于 2025-3-30 07:29:17
Yann Simsont,Peter Gerlinger,Manfred AignerOur aim in this chapter is to see what specific character an increment in the order of equations and inclusions under consideration brings to the structure of the theory of the Cauchy problem, and how this may imply the possibility of a weakening of restrictions on functions appearing in equations (inclusions).