Enclosure 发表于 2025-3-21 18:30:31
书目名称Basic Number Theory.影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0181085<br><br> <br><br>书目名称Basic Number Theory.影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0181085<br><br> <br><br>书目名称Basic Number Theory.网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0181085<br><br> <br><br>书目名称Basic Number Theory.网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0181085<br><br> <br><br>书目名称Basic Number Theory.被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0181085<br><br> <br><br>书目名称Basic Number Theory.被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0181085<br><br> <br><br>书目名称Basic Number Theory.年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0181085<br><br> <br><br>书目名称Basic Number Theory.年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0181085<br><br> <br><br>书目名称Basic Number Theory.读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0181085<br><br> <br><br>书目名称Basic Number Theory.读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0181085<br><br> <br><br>锯齿状 发表于 2025-3-21 20:42:50
http://reply.papertrans.cn/19/1811/181085/181085_2.pngvoluble 发表于 2025-3-22 02:33:01
http://reply.papertrans.cn/19/1811/181085/181085_3.png来这真柔软 发表于 2025-3-22 08:37:14
http://reply.papertrans.cn/19/1811/181085/181085_4.pngFermentation 发表于 2025-3-22 12:32:10
The theorem of Riemann-Roch the infinite ones, singled out by intrinsic properties. It would be possible to develop an analogous theory for .-fields of characteristic . >1 by arbitrarily setting apart a finite number of places; this was the point of view adopted by Dedekind and Weber in the early stages of the theory. Whichev考古学 发表于 2025-3-22 16:24:54
Zeta-functions of A-fields at .; if . is a finite place, .. is the maximal compact subring of .., and .. the maximal ideal in ... Moreover, in the latter case, we will agree once for all to denote by .. the module of the field .. and by .. a prime element of .., so that, by th. 6 of Chap. I–4, .... is a field with .. elementLigneous 发表于 2025-3-22 19:53:23
Traces and norms finite degree . over .. If . is an .-field and ., we must have .., .., . 2; then, by corollary 3 of prop. 4, Chap. III-3, ....(x) = x+x̄ and ....(x) . xx̄.... maps . onto ., and .... maps .. onto .., which is a subgroup of .. of index 2.烧瓶 发表于 2025-3-22 23:54:21
http://reply.papertrans.cn/19/1811/181085/181085_8.pngCoronary 发表于 2025-3-23 03:49:45
http://reply.papertrans.cn/19/1811/181085/181085_9.pngGlaci冰 发表于 2025-3-23 06:24:53
Simple algebras over A-fieldsncipally concerned with a simple algebra . over .; as stipulated in Chapter IX, it is always understood that . is central, i. e. that its center is ., and that it has a finite dimension over . by corollary 3 of prop. 3, Chap. IX–1, this dimension can then be written as .., where . is an integer = 1.