Animosity 发表于 2025-3-21 19:26:57
书目名称Basic Number Theory影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0181084<br><br> <br><br>书目名称Basic Number Theory影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0181084<br><br> <br><br>书目名称Basic Number Theory网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0181084<br><br> <br><br>书目名称Basic Number Theory网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0181084<br><br> <br><br>书目名称Basic Number Theory被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0181084<br><br> <br><br>书目名称Basic Number Theory被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0181084<br><br> <br><br>书目名称Basic Number Theory年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0181084<br><br> <br><br>书目名称Basic Number Theory年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0181084<br><br> <br><br>书目名称Basic Number Theory读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0181084<br><br> <br><br>书目名称Basic Number Theory读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0181084<br><br> <br><br>壁画 发表于 2025-3-21 22:04:36
http://reply.papertrans.cn/19/1811/181084/181084_2.pngDecongestant 发表于 2025-3-22 03:41:22
The theorem of Riemann-Roch algebraic geometry; this lies outside the scope of this book. The results to be given here should be regarded chiefly as an illustration for the methods developed above and as an introduction to a more general theory.反话 发表于 2025-3-22 05:28:15
Simple algebrasthe same properties. Tensor-products will be understood to be taken over the groundfield; thus we write .⊗. instead of .⊗. when . are algebras over ., and .⊗. or .., instead of .⊗., when . is an algebra over . and . a field containing .. being always considered as an algebra over ..Patrimony 发表于 2025-3-22 10:08:27
http://reply.papertrans.cn/19/1811/181084/181084_5.png不可知论 发表于 2025-3-22 16:20:39
http://reply.papertrans.cn/19/1811/181084/181084_6.png时代 发表于 2025-3-22 17:44:40
http://reply.papertrans.cn/19/1811/181084/181084_7.png注意到 发表于 2025-3-23 00:20:14
Simple algebras over local fieldser words, if . is such a homomorphism, and . ∈ ., we write . for the image of . under .. We consider Hom(., .), in an obvious manner, as a vector-space over .; as such, it has a finite dimension, since it is a subspace of the space of .-linear mappings of . into .. As usual, we write End(.) for Hom(.).脖子 发表于 2025-3-23 01:49:59
http://reply.papertrans.cn/19/1811/181084/181084_9.png支柱 发表于 2025-3-23 05:43:29
https://doi.org/10.1007/978-1-4613-1507-0ts, and |π.|. = ... If . is of characteristic .>1, we will denote by . the number of elements of the field of constants of . and identify that field with .; then, according to the definitions in Chap. VI, we have .. = .. for every place ..