脾气好 发表于 2025-3-21 16:46:55
书目名称Basic Number Theory影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0181083<br><br> <br><br>书目名称Basic Number Theory影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0181083<br><br> <br><br>书目名称Basic Number Theory网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0181083<br><br> <br><br>书目名称Basic Number Theory网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0181083<br><br> <br><br>书目名称Basic Number Theory被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0181083<br><br> <br><br>书目名称Basic Number Theory被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0181083<br><br> <br><br>书目名称Basic Number Theory年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0181083<br><br> <br><br>书目名称Basic Number Theory年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0181083<br><br> <br><br>书目名称Basic Number Theory读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0181083<br><br> <br><br>书目名称Basic Number Theory读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0181083<br><br> <br><br>吞噬 发表于 2025-3-21 20:24:34
https://doi.org/10.1007/978-3-642-77247-4n .. If . is also a finite set of places of ., and .⊃ ., then .(.) is contained in .(.); moreover, its topology and its ring structure are those induced by those of .(.) and k.(.) is an open subset of k.(.).发展 发表于 2025-3-22 02:25:51
Herpes Zoster and Vascular Risk algebra .(.) is uniquely determined up to an isomorphism, and .(.) and .(.) are uniquely determined. One says that . is . or . at . according as . is trivial over . or not, i. e. according as .(.)=1 or .(.) > 1.榨取 发表于 2025-3-22 06:06:00
Adelesn .. If . is also a finite set of places of ., and .⊃ ., then .(.) is contained in .(.); moreover, its topology and its ring structure are those induced by those of .(.) and k.(.) is an open subset of k.(.).伟大 发表于 2025-3-22 12:33:39
http://reply.papertrans.cn/19/1811/181083/181083_5.pngFLEET 发表于 2025-3-22 16:06:28
http://reply.papertrans.cn/19/1811/181083/181083_6.png全神贯注于 发表于 2025-3-22 18:38:12
Classification and Nomenclature, finite degree . over .. If . is an .-field and . ≠ ., we must have . = ., . = ., . = 2; then, by corollary 3 of prop. 4, Chap. III-3, .(.) = .+. and .(.) = .; . maps . onto ., and . maps . onto ., which is a subgroup of . of index 2.天空 发表于 2025-3-22 22:47:14
http://reply.papertrans.cn/19/1811/181083/181083_8.png经典 发表于 2025-3-23 04:03:59
https://doi.org/10.1007/978-3-642-61945-8algebraic number field; algebraic number theory; number theoryexquisite 发表于 2025-3-23 08:18:10
978-3-540-58655-5Springer-Verlag Berlin Heidelberg 1995