VIRAL 发表于 2025-3-21 18:05:34
书目名称Basic Concepts of Algebraic Topology影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0180986<br><br> <br><br>书目名称Basic Concepts of Algebraic Topology影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0180986<br><br> <br><br>书目名称Basic Concepts of Algebraic Topology网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0180986<br><br> <br><br>书目名称Basic Concepts of Algebraic Topology网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0180986<br><br> <br><br>书目名称Basic Concepts of Algebraic Topology被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0180986<br><br> <br><br>书目名称Basic Concepts of Algebraic Topology被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0180986<br><br> <br><br>书目名称Basic Concepts of Algebraic Topology年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0180986<br><br> <br><br>书目名称Basic Concepts of Algebraic Topology年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0180986<br><br> <br><br>书目名称Basic Concepts of Algebraic Topology读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0180986<br><br> <br><br>书目名称Basic Concepts of Algebraic Topology读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0180986<br><br> <br><br>strain 发表于 2025-3-21 21:39:51
http://reply.papertrans.cn/19/1810/180986/180986_2.png柔软 发表于 2025-3-22 01:44:17
http://reply.papertrans.cn/19/1810/180986/180986_3.pnghyperuricemia 发表于 2025-3-22 07:41:15
http://reply.papertrans.cn/19/1810/180986/180986_4.png剥皮 发表于 2025-3-22 11:24:28
http://reply.papertrans.cn/19/1810/180986/180986_5.pngAcquired 发表于 2025-3-22 16:28:01
http://reply.papertrans.cn/19/1810/180986/180986_6.pnganchor 发表于 2025-3-22 21:08:31
http://reply.papertrans.cn/19/1810/180986/180986_7.pngG-spot 发表于 2025-3-23 01:08:22
The Higher Homotopy Groups,tal group was recognized early in the development of algebraic topology. Definitions of these “higher homotopy groups” were given in the years 1932–1935 by Eduard Cech (1893–1960) and Witold Hurewicz (1904–1956). It was Hurewicz who gave the most satisfactory definition and proved the fundamental properties.难解 发表于 2025-3-23 02:04:36
The Fundamental Group, that two closed paths in a space are homotopic provided that each of them can be “continuously deformed into the other.” In Figure 4.1, for example, paths . and . are homotopic to each other and . is homotopic to a constant path. Path . is not homotopic to either . or . since neither . nor . can be pulled across the hole that they enclose.裁决 发表于 2025-3-23 06:59:24
http://reply.papertrans.cn/19/1810/180986/180986_10.png