CLAIM 发表于 2025-3-23 12:57:37
Equivariant ,-Theory Functor K, : Periodicity, Thom Isomorphism, Localization, and Completioning the semiring of .-vector bundles into its ring envelope. We saw that the basic properties of the equivariant versions of vector bundle theory have close parallels with the usual vector bundle theory, and the same is true for the related relative .-theories. This we carry further in this chapter圆柱 发表于 2025-3-23 15:48:28
http://reply.papertrans.cn/19/1810/180961/180961_12.png种植,培养 发表于 2025-3-23 19:43:34
http://reply.papertrans.cn/19/1810/180961/180961_13.pngLATE 发表于 2025-3-24 01:52:04
Generalities on Bundles and Categoriesuse the term bundle in the most general context, and then in the next chapters, we define the main concepts of our study, that is, vector bundles, principal bundles, and fibre bundles, as bundles with additional structure.Buttress 发表于 2025-3-24 02:34:18
http://reply.papertrans.cn/19/1810/180961/180961_15.pngAV-node 发表于 2025-3-24 09:05:31
http://reply.papertrans.cn/19/1810/180961/180961_16.png领巾 发表于 2025-3-24 11:36:59
http://reply.papertrans.cn/19/1810/180961/180961_17.png公共汽车 发表于 2025-3-24 17:18:45
http://reply.papertrans.cn/19/1810/180961/180961_18.pngDiverticulitis 发表于 2025-3-24 22:23:00
http://reply.papertrans.cn/19/1810/180961/180961_19.pngathlete’s-foot 发表于 2025-3-25 00:38:20
https://doi.org/10.1007/978-3-642-13125-7a great task, but there is a special construction of a principal G-bundle due to Milnor. It has the property that all other numerable principal G-bundles over all possible spaces are induced from this particular bundle. Thus, it is called the universal principal Gbundle, and its base space is called the classifying space . of the group G.