inferno 发表于 2025-3-25 03:55:21

Prime Numbers in Arithmetic Progressions,necting the sum of values of the function Λ. over the integers lying in a given arithmetic progression with the zeros of an L-function. This explicit formula together with a theorem on the boundary of the zeros of the .-function will yield the prime number theorem for arithmetic progressions. We shall always assume below that . ≤ ..

averse 发表于 2025-3-25 09:28:05

http://reply.papertrans.cn/19/1810/180955/180955_22.png

心神不宁 发表于 2025-3-25 15:12:07

,Waring’s Problem,f the solvability in natural numbers .., ..,…,.. of the equation.where . ≥3 and .(.) (Waring’s problem). Waring’s problem generalizes Lagrange’s theorem that every natural number is the sum of four squares.

水汽 发表于 2025-3-25 17:38:13

http://image.papertrans.cn/b/image/180955.jpg

MOCK 发表于 2025-3-25 22:07:20

http://reply.papertrans.cn/19/1810/180955/180955_25.png

不确定 发表于 2025-3-26 02:21:19

http://reply.papertrans.cn/19/1810/180955/180955_26.png

crumble 发表于 2025-3-26 06:11:27

http://reply.papertrans.cn/19/1810/180955/180955_27.png

Countermand 发表于 2025-3-26 10:21:59

http://reply.papertrans.cn/19/1810/180955/180955_28.png

detach 发表于 2025-3-26 13:16:32

http://reply.papertrans.cn/19/1810/180955/180955_29.png

改进 发表于 2025-3-26 19:04:04

http://reply.papertrans.cn/19/1810/180955/180955_30.png
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Basic Analytic Number Theory; Anatolij A. Karatsuba,Melvyn B. Nathanson Book 1993 Springer-Verlag Berlin Heidelberg 1993 Analytic Number T