向前变椭圆 发表于 2025-3-25 06:08:38

http://reply.papertrans.cn/19/1804/180376/180376_21.png

减至最低 发表于 2025-3-25 07:35:52

http://reply.papertrans.cn/19/1804/180376/180376_22.png

不感兴趣 发表于 2025-3-25 11:45:40

http://reply.papertrans.cn/19/1804/180376/180376_23.png

Antecedent 发表于 2025-3-25 16:08:47

http://reply.papertrans.cn/19/1804/180376/180376_24.png

昆虫 发表于 2025-3-25 20:33:41

The Regular Ring of a Finite Baer ∗-RingThe present chapter is based on (Berberian, .).

NAG 发表于 2025-3-26 01:10:05

http://reply.papertrans.cn/19/1804/180376/180376_26.png

Invertebrate 发表于 2025-3-26 04:23:51

http://reply.papertrans.cn/19/1804/180376/180376_27.png

AWE 发表于 2025-3-26 11:20:56

Additivity of Equivalence(.). such that (i) the ., are orthogonal, (ii) the . are orthogonal, and (iii) .∼. for all ı∈.. We write . Thus, ., (.). are equivalent partitions of ., . [§17, Def. 1]. For each ı∈., we denote by ., a fixed partial isometry such that ., ..

鞭打 发表于 2025-3-26 14:01:40

Dimension in Finite Baer ∗-Ringsof . require different techniques and are treated separately. A salient feature of the exposition is that virtually all results are obtained without assuming the parallelogram law (P); it is only in the final section on modularity (Section 34) that (P) is invoked.

Silent-Ischemia 发表于 2025-3-26 17:48:21

https://doi.org/10.1007/978-3-476-05479-1llowing definition:. A ∗-. (or .) is a ring with an involution .↦.: . When . is also an algebra, over a field with involution .↦. (the identity involution is allowed), we assume further that . and call . a ∗-. {The complex ∗-algebras are especially important special cases, but the main emphasis of t
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Baer *-Rings; Sterling K. Berberian Book 1972 Springer-Verlag Berlin Heidelberg 1972 16P60, 16W10, 46L10.Algebra.Baer *-rings.algebra.matr