我赞成 发表于 2025-3-21 16:18:10
书目名称B-Model Gromov-Witten Theory影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0180017<br><br> <br><br>书目名称B-Model Gromov-Witten Theory影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0180017<br><br> <br><br>书目名称B-Model Gromov-Witten Theory网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0180017<br><br> <br><br>书目名称B-Model Gromov-Witten Theory网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0180017<br><br> <br><br>书目名称B-Model Gromov-Witten Theory被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0180017<br><br> <br><br>书目名称B-Model Gromov-Witten Theory被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0180017<br><br> <br><br>书目名称B-Model Gromov-Witten Theory年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0180017<br><br> <br><br>书目名称B-Model Gromov-Witten Theory年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0180017<br><br> <br><br>书目名称B-Model Gromov-Witten Theory读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0180017<br><br> <br><br>书目名称B-Model Gromov-Witten Theory读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0180017<br><br> <br><br>Mawkish 发表于 2025-3-21 22:20:56
https://doi.org/10.1007/978-3-319-94220-9mirror symmetry; quantization; singularity theory; integrable systems; holomorphic anomaly equation; modu外观 发表于 2025-3-22 01:09:57
http://reply.papertrans.cn/19/1801/180017/180017_3.png过分自信 发表于 2025-3-22 07:55:18
http://reply.papertrans.cn/19/1801/180017/180017_4.png泰然自若 发表于 2025-3-22 11:06:20
http://reply.papertrans.cn/19/1801/180017/180017_5.png植物学 发表于 2025-3-22 16:06:01
Trends in Mathematicshttp://image.papertrans.cn/b/image/180017.jpg温和女人 发表于 2025-3-22 17:20:17
Book 2018ject of quantization, the remainder of the book is devoted to the B-model from a mathematician’s point-of-view, including such topics as polyvector fields and primitive forms, Givental’s ancestor potential, and integrablesystems..使无效 发表于 2025-3-23 01:14:10
2297-0215physical perspectives in one reference, providing a unique .This book collects various perspectives, contributed by both mathematicians and physicists, on the B-model and its role in mirror symmetry. Mirror symmetry is an active topic of research in both the mathematics and physics communities, butInitiative 发表于 2025-3-23 05:00:50
http://reply.papertrans.cn/19/1801/180017/180017_9.pngDysplasia 发表于 2025-3-23 08:23:16
http://reply.papertrans.cn/19/1801/180017/180017_10.png