centipede 发表于 2025-3-21 19:47:35
书目名称Analysis and Control for Fractional-order Systems影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0167433<br><br> <br><br>书目名称Analysis and Control for Fractional-order Systems影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0167433<br><br> <br><br>书目名称Analysis and Control for Fractional-order Systems网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0167433<br><br> <br><br>书目名称Analysis and Control for Fractional-order Systems网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0167433<br><br> <br><br>书目名称Analysis and Control for Fractional-order Systems被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0167433<br><br> <br><br>书目名称Analysis and Control for Fractional-order Systems被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0167433<br><br> <br><br>书目名称Analysis and Control for Fractional-order Systems年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0167433<br><br> <br><br>书目名称Analysis and Control for Fractional-order Systems年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0167433<br><br> <br><br>书目名称Analysis and Control for Fractional-order Systems读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0167433<br><br> <br><br>书目名称Analysis and Control for Fractional-order Systems读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0167433<br><br> <br><br>使成整体 发表于 2025-3-21 23:44:01
Adaptive Sliding Mode Control for Uncertain General Fractional Chaotic SystemsASMC) of uncertain general fractional chaotic systems (UGFCSs) with uncertainty and external disturbances. Initially, the existence and uniqueness of solutions and the Lyapunov stability criterion for GFDSs are presented and verified. Furthermore, general fractional integral type sliding surfaces an南极 发表于 2025-3-22 01:48:22
Synchronization of Uncertain General Fractional Unified Chaotic Systems via Finite-Time Adaptive Slified chaotic systems (UGFUCSs) when uncertainty and external disturbance exist. Firstly, general fractional unified chaotic system (GFUCS) is developed. GFUCS may be transitioned from general Lorenz system to general Chen system, and general kernel function could compress and extend the time domain.终止 发表于 2025-3-22 06:48:34
Finite-Time Synchronization of Delayed Fractional-Order Heterogeneous Complex Networksomplex networks (TFCHCNs) with external interference via a discontinuous feedback controller. Firstly, we propose a novel Lemma which is useful for discussing the FET stability and synchronization problem of FO systems. Secondly, based on the proposed Lemma, a discontinuous feedback controller is de使虚弱 发表于 2025-3-22 10:38:11
http://reply.papertrans.cn/17/1675/167433/167433_5.png粉笔 发表于 2025-3-22 15:13:04
Global ML Stability of the Delayed Fractional-Order Coupled Reaction-Diffusion System on Networks wiction-diffusion system, particularly when strong connectedness is absent. We employ Leary-Schauder’s fixed point theorem and the Lyapunov method to establish criteria for both solution existence and global Mittag-Leffler stability. To validate the theoretical framework, we provide a numerical exampl欺骗世家 发表于 2025-3-22 21:05:47
Global Mittag-Leffler Synchronization of Coupled Delayed Fractional Reaction-Diffusion Cohen-Grossbeon-strongly connected topology. A novel fractional integral sliding mode surface and the corresponding control law are designed to realize the global Mittag-Leffler synchronization. The sufficient conditions for synchronization and the reachability of the sliding mode surface are derived via hierarcExpertise 发表于 2025-3-23 01:13:55
Projective Synchronization for Uncertain Fractional Reaction-Diffusion Systems via Adaptive Sliding nal adaptive sliding mode control method. The approach involves designing a fractional-order integral type switching function and deriving adaptive sliding mode control laws that facilitate the reachability of the fractional-order sliding mode surface within a finite-time interval. Additionally, anMUTE 发表于 2025-3-23 04:01:55
A Fractional-Order Food Chain System Incorporating Holling-II Type Functional Response and Prey Refuential equations, the momentous advantage of a fractional-order system is that it has memory. The introduction of fractional differential equation solves the problem of time memory, which makes the fractional ecosystem more reasonable than the ordinary differential ecosystem. Thus, more and more repHearten 发表于 2025-3-23 05:31:30
http://reply.papertrans.cn/17/1675/167433/167433_10.png