准则 发表于 2025-3-25 07:23:00

https://doi.org/10.1007/978-3-662-00734-1Automorphe Form; Darstellung (Math; ); Zahlentheorie; derivative; integral; Modular form

META 发表于 2025-3-25 11:13:24

978-3-540-10697-5Springer-Verlag Berlin Heidelberg 1981

Basal-Ganglia 发表于 2025-3-25 12:13:39

http://reply.papertrans.cn/17/1667/166630/166630_23.png

责问 发表于 2025-3-25 18:54:04

http://reply.papertrans.cn/17/1667/166630/166630_24.png

招待 发表于 2025-3-25 22:29:21

Estimates of Coefficients of Modular Forms and Generalized Modular Relations,de of the Fourier coefficients of Siegel modular forms, while the second pertains to certain generalized modular relations (which may also be called Poisson formulae of Hecke type and) which appear to provide some kind of a link between automorphic forms (of one variable), representation theory and arithmetic.

prostatitis 发表于 2025-3-26 01:34:45

http://reply.papertrans.cn/17/1667/166630/166630_26.png

轻弹 发表于 2025-3-26 08:09:12

Gelbart Harder Iwasawa,Jacquet Katz Piatetski-Shap

强化 发表于 2025-3-26 11:03:30

Automorphic Forms, Representation Theory and Arithmetic978-3-662-00734-1

Lymphocyte 发表于 2025-3-26 16:11:55

http://reply.papertrans.cn/17/1667/166630/166630_29.png

Sad570 发表于 2025-3-26 20:13:48

,Crystalline Cohomology, Dieudonné Modules, and Jacobi Sums,functions of algebraic varieties over finite fields. This connection was exploited by Weil; one of the very first applications that Weil gave of the then newly proven “Riemann Hypothesis” for curves over finite fields was the estimation of the absolute value of Kloosterman sums (cf).
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Automorphic Forms, Representation Theory and Arithmetic; Papers presented at Gelbart Harder Iwasawa,Jacquet Katz Piatetski-Shap Conference