投射技术 发表于 2025-3-21 19:19:08
书目名称Automorphic Forms影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0166622<br><br> <br><br>书目名称Automorphic Forms影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0166622<br><br> <br><br>书目名称Automorphic Forms网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0166622<br><br> <br><br>书目名称Automorphic Forms网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0166622<br><br> <br><br>书目名称Automorphic Forms被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0166622<br><br> <br><br>书目名称Automorphic Forms被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0166622<br><br> <br><br>书目名称Automorphic Forms年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0166622<br><br> <br><br>书目名称Automorphic Forms年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0166622<br><br> <br><br>书目名称Automorphic Forms读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0166622<br><br> <br><br>书目名称Automorphic Forms读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0166622<br><br> <br><br>Cuisine 发表于 2025-3-22 00:01:20
On the Genus Version of the Basis Problem II: The Case of Oldforms,e of the present paper is to complete the result of Waldspurger and others by a precise description, which cusp forms beyond the newforms are linear combinations of theta series attached to lattices in a given genus. Due to Siegel’s theorem it is reasonable to restrict attention to cusp forms. The a六边形 发表于 2025-3-22 04:12:24
http://reply.papertrans.cn/17/1667/166622/166622_3.pngcalumniate 发表于 2025-3-22 07:12:23
http://reply.papertrans.cn/17/1667/166622/166622_4.png传染 发表于 2025-3-22 11:57:07
On Formal Series of Jacobi Forms and Borcherds Products,iegel modular forms, these Jacobi forms have a kind of symmetry. In this paper, we give one conjecture on the Fourier-Jacobi expansion that is true for Siegel modular forms with small levels. Our conjecture is useful to show the convergence of Maass lifts and Borcherds products.Chipmunk 发表于 2025-3-22 16:13:24
http://reply.papertrans.cn/17/1667/166622/166622_6.png令人发腻 发表于 2025-3-22 17:08:33
On ,-Adic Properties of Siegel Modular Forms,s of our results are also valid for vector-valued modular forms. In our approach to .-adic Siegel modular forms we follow Serre closely; his proofs however do not generalize to the Siegel case or need some modifications.Chronological 发表于 2025-3-22 22:48:14
http://reply.papertrans.cn/17/1667/166622/166622_8.pngMendicant 发表于 2025-3-23 05:18:16
Restrictions of Jacobi Forms of Several Variables,special cases . = .. and .. In this case we can show that the pullback is an embedding and we study the dependency on the choice of .. Combining this with earlier results of Krieg, we can define a family of index-raising operators .. → .. for all ., which interpolate the operators . defined by EichlPerennial长期的 发表于 2025-3-23 09:20:13
http://reply.papertrans.cn/17/1667/166622/166622_10.png