Foreshadow
发表于 2025-3-23 12:39:46
http://reply.papertrans.cn/17/1665/166462/166462_11.png
fallible
发表于 2025-3-23 14:40:01
http://reply.papertrans.cn/17/1665/166462/166462_12.png
关节炎
发表于 2025-3-23 18:04:05
http://reply.papertrans.cn/17/1665/166462/166462_13.png
渗入
发表于 2025-3-24 02:01:53
C˘alin Vamos¸,Maria Cr˘aciunThe reader will be able to reproduce the original automatic algorithms for trend estimation and time series partitioning.Teaches the essential characteristics of the polynomial fitting and moving aver
MIME
发表于 2025-3-24 06:06:07
SpringerBriefs in Physicshttp://image.papertrans.cn/b/image/166462.jpg
五行打油诗
发表于 2025-3-24 07:18:06
Dirichlet branches bifurcating from zero,ntroductory chapter we briefly present some basic notions which are used in the rest of the book. The main methods to estimate trends from noisy time series are introduced in Sect. 1.2. In the last section we discuss the properties of the order one autoregressive stochastic process AR(1) which has t
hazard
发表于 2025-3-24 14:31:03
http://reply.papertrans.cn/17/1665/166462/166462_17.png
nostrum
发表于 2025-3-24 18:16:40
http://reply.papertrans.cn/17/1665/166462/166462_18.png
GOAD
发表于 2025-3-24 19:08:11
https://doi.org/10.1007/BFb0099278 a single parameter, the semi-length . of the averaging window. We introduce the repeated central moving average (RCMA) which depends on an additional parameter (the number . of averagings) and allows a gradual smoothing of the time series. Using Monte Carlo experiments we analyze the properties of
缩影
发表于 2025-3-25 00:18:15
http://reply.papertrans.cn/17/1665/166462/166462_20.png