Foreshadow 发表于 2025-3-23 12:39:46
http://reply.papertrans.cn/17/1665/166462/166462_11.pngfallible 发表于 2025-3-23 14:40:01
http://reply.papertrans.cn/17/1665/166462/166462_12.png关节炎 发表于 2025-3-23 18:04:05
http://reply.papertrans.cn/17/1665/166462/166462_13.png渗入 发表于 2025-3-24 02:01:53
C˘alin Vamos¸,Maria Cr˘aciunThe reader will be able to reproduce the original automatic algorithms for trend estimation and time series partitioning.Teaches the essential characteristics of the polynomial fitting and moving averMIME 发表于 2025-3-24 06:06:07
SpringerBriefs in Physicshttp://image.papertrans.cn/b/image/166462.jpg五行打油诗 发表于 2025-3-24 07:18:06
Dirichlet branches bifurcating from zero,ntroductory chapter we briefly present some basic notions which are used in the rest of the book. The main methods to estimate trends from noisy time series are introduced in Sect. 1.2. In the last section we discuss the properties of the order one autoregressive stochastic process AR(1) which has thazard 发表于 2025-3-24 14:31:03
http://reply.papertrans.cn/17/1665/166462/166462_17.pngnostrum 发表于 2025-3-24 18:16:40
http://reply.papertrans.cn/17/1665/166462/166462_18.pngGOAD 发表于 2025-3-24 19:08:11
https://doi.org/10.1007/BFb0099278 a single parameter, the semi-length . of the averaging window. We introduce the repeated central moving average (RCMA) which depends on an additional parameter (the number . of averagings) and allows a gradual smoothing of the time series. Using Monte Carlo experiments we analyze the properties of缩影 发表于 2025-3-25 00:18:15
http://reply.papertrans.cn/17/1665/166462/166462_20.png