是消毒 发表于 2025-3-21 19:03:28
书目名称Automated Theorem Proving影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0166378<br><br> <br><br>书目名称Automated Theorem Proving影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0166378<br><br> <br><br>书目名称Automated Theorem Proving网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0166378<br><br> <br><br>书目名称Automated Theorem Proving网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0166378<br><br> <br><br>书目名称Automated Theorem Proving被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0166378<br><br> <br><br>书目名称Automated Theorem Proving被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0166378<br><br> <br><br>书目名称Automated Theorem Proving年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0166378<br><br> <br><br>书目名称Automated Theorem Proving年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0166378<br><br> <br><br>书目名称Automated Theorem Proving读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0166378<br><br> <br><br>书目名称Automated Theorem Proving读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0166378<br><br> <br><br>Venules 发表于 2025-3-22 00:07:55
978-1-4612-6519-1Springer-Verlag New York, Inc. 2001暗讽 发表于 2025-3-22 03:22:30
http://reply.papertrans.cn/17/1664/166378/166378_3.pngObedient 发表于 2025-3-22 08:11:13
http://reply.papertrans.cn/17/1664/166378/166378_4.pngInsatiable 发表于 2025-3-22 11:29:31
http://reply.papertrans.cn/17/1664/166378/166378_5.png幸福愉悦感 发表于 2025-3-22 14:15:58
http://reply.papertrans.cn/17/1664/166378/166378_6.png湿润 发表于 2025-3-22 19:44:53
The Cade Atp System Competitions and Other Theorem Provers,on was held in 1996 at CADE-13 at Rutgers University. In 2000, the competition will take place at Carnegie Mellon University. THEO, under its previous name of TGTP, participated in the 1997 and 1998 competitions. A parallel version of TGTP called OCTOPUS participated in the 1997 competition. HERBY participated in the 1998 competition.Monotonous 发表于 2025-3-23 00:36:00
http://reply.papertrans.cn/17/1664/166378/166378_8.png谄媚于人 发表于 2025-3-23 02:33:43
Resolution-Refutation Proofs,This chapter establishes the theoretical foundations of resolution-refutation theorem proving as carried out by THEO. A . is a proof in which some sequence of inferences performed on a theorem’s base clauses and on resulting inferences derives the NULL clause. Inferences generated by THEO are restricted to binary resolution and binary factoring.草率男 发表于 2025-3-23 06:04:24
http://reply.papertrans.cn/17/1664/166378/166378_10.png