Julienne 发表于 2025-3-21 17:50:22

书目名称Automated Reasoning影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0166327<br><br>        <br><br>书目名称Automated Reasoning影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0166327<br><br>        <br><br>书目名称Automated Reasoning网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0166327<br><br>        <br><br>书目名称Automated Reasoning网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0166327<br><br>        <br><br>书目名称Automated Reasoning被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0166327<br><br>        <br><br>书目名称Automated Reasoning被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0166327<br><br>        <br><br>书目名称Automated Reasoning年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0166327<br><br>        <br><br>书目名称Automated Reasoning年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0166327<br><br>        <br><br>书目名称Automated Reasoning读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0166327<br><br>        <br><br>书目名称Automated Reasoning读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0166327<br><br>        <br><br>

梯田 发表于 2025-3-21 21:10:35

Reasoning About Algebraic Structures with Implicit Carriers in Isabelle/HOLctures in addition to reasoning in algebraic structures. We present an approach for this using classes and locales with implicit carriers. This involves using function liftings to implement some aspects of dependent types and using embeddings of algebras to inherit theorems. We also formalise a theory of filters based on partial orders.

gene-therapy 发表于 2025-3-22 04:15:06

http://reply.papertrans.cn/17/1664/166327/166327_3.png

使厌恶 发表于 2025-3-22 07:52:53

Andrew Kakabadse,Nada KakabadseThis paper describes the design of the normalising tactic . for the Lean prover. This tactic improves on existing tactics by extending commutative rings with a binary exponent operator. An inductive family of types represents the normal form, enforcing various invariants. The design can also be extended with more operators.

CYN 发表于 2025-3-22 09:28:49

https://doi.org/10.1057/978-1-349-94994-6A fundamental theorem states that every field admits an algebraically closed extension. Despite its central importance, this theorem has never before been formalised in a proof assistant. We fill this gap by documenting its formalisation in Isabelle/HOL, describing the difficulties that impeded this development and their solutions.

flimsy 发表于 2025-3-22 15:03:39

http://reply.papertrans.cn/17/1664/166327/166327_6.png

Abrupt 发表于 2025-3-22 20:51:06

http://reply.papertrans.cn/17/1664/166327/166327_7.png

高调 发表于 2025-3-23 00:09:34

Algebraically Closed Fields in Isabelle/HOLA fundamental theorem states that every field admits an algebraically closed extension. Despite its central importance, this theorem has never before been formalised in a proof assistant. We fill this gap by documenting its formalisation in Isabelle/HOL, describing the difficulties that impeded this development and their solutions.

irreparable 发表于 2025-3-23 01:28:20

Formalization of Forcing in Isabelle/ZFWe formalize the theory of forcing in the set theory framework of Isabelle/ZF. Under the assumption of the existence of a countable transitive model of ., we construct a proper generic extension and show that the latter also satisfies .. In doing so, we remodularized Paulson’s . library.

玩笑 发表于 2025-3-23 08:15:10

http://reply.papertrans.cn/17/1664/166327/166327_10.png
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Automated Reasoning; 10th International J Nicolas Peltier,Viorica Sofronie-Stokkermans Conference proceedings 2020 Springer Nature Switzerl