投降 发表于 2025-3-21 19:14:57
书目名称Audio- and Video-Based Biometric Person Authentication影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0164981<br><br> <br><br>书目名称Audio- and Video-Based Biometric Person Authentication影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0164981<br><br> <br><br>书目名称Audio- and Video-Based Biometric Person Authentication网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0164981<br><br> <br><br>书目名称Audio- and Video-Based Biometric Person Authentication网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0164981<br><br> <br><br>书目名称Audio- and Video-Based Biometric Person Authentication被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0164981<br><br> <br><br>书目名称Audio- and Video-Based Biometric Person Authentication被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0164981<br><br> <br><br>书目名称Audio- and Video-Based Biometric Person Authentication年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0164981<br><br> <br><br>书目名称Audio- and Video-Based Biometric Person Authentication年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0164981<br><br> <br><br>书目名称Audio- and Video-Based Biometric Person Authentication读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0164981<br><br> <br><br>书目名称Audio- and Video-Based Biometric Person Authentication读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0164981<br><br> <br><br>预兆好 发表于 2025-3-21 21:16:40
http://reply.papertrans.cn/17/1650/164981/164981_2.png杂役 发表于 2025-3-22 01:21:53
http://reply.papertrans.cn/17/1650/164981/164981_3.pngHiatus 发表于 2025-3-22 07:12:40
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/b/image/164981.jpgDeference 发表于 2025-3-22 11:39:37
http://reply.papertrans.cn/17/1650/164981/164981_5.pngLATER 发表于 2025-3-22 16:33:13
http://reply.papertrans.cn/17/1650/164981/164981_6.png南极 发表于 2025-3-22 19:33:23
http://reply.papertrans.cn/17/1650/164981/164981_7.pngCreditee 发表于 2025-3-23 00:04:24
http://reply.papertrans.cn/17/1650/164981/164981_8.pngDEI 发表于 2025-3-23 02:58:14
http://reply.papertrans.cn/17/1650/164981/164981_9.png打折 发表于 2025-3-23 08:38:35
Groups and Clusters of Galaxieson approach, which is shown to be quite accurate. Recognition of single frames against calculated unwrapped textures is carried out using principal component analysis. The system is typically better than 90% correct in its identifications.